Neue Nanowelt in Zellen entdeckt

Wie eine Zelle Hunderte Signale gleichzeitig verarbeiten kann, zeigt ein Forschungsteam um Martin Lohse jetzt im Fachblatt „Cell“. Die neuen Ergebnisse werden ein komplett neues Forschungsfeld in der Zellbiologie eröffnen.

Quelle: IDW Informationsdienst Wissenschaft

Pop-up-Fabriken hinter der Zellmembran

Wie eine Zelle hunderte Signale gleichzeitig verarbeiten kann, zeigen MDC-Forschende im Fachblatt „Cell“. Andreas Bock und seine Kolleg*innen gehen davon aus, dass sich mit den Ergebnissen ein komplett neues Forschungsfeld in der Zellbiologie öffnen wird.

Quelle: IDW Informationsdienst Wissenschaft

Zielgerichtete Enzyme zerstören Virus-RNA

Einem Forschungsteam unter der Leitung der Technischen Universität München (TUM) ist es gelungen, die Erbinformation von SARS-CoV-2 direkt nach dem Eindringen des Virus in die Zelle mit spezifischen Enzymen zu zerstören. Mithilfe der Erkenntnisse könnte eine neue Therapie gegen COVID-19 entwickelt werden.

Quelle: IDW Informationsdienst Wissenschaft

Der Torwächter vor der Proteinfabrik

Wie werden Proteine in der Zelle sortiert? Ein internationales Forschungsteam unter Konstanzer Leitung löst dieses jahrzehntealte Rätsel

Quelle: IDW Informationsdienst Wissenschaft

Identifikation von Stoffwechselabhängigkeiten in Krebszellen liefert neue Therapieansätze

Viele Krebsarten weisen Veränderungen in ihrem Zellstoffwechsel auf. Diese tragen zur Entstehung und zum Fortschreiten von Krebs bei. Ein veränderter Zellmetabolismus gilt daher als Krebsmarker und könnte als „Angriffspunkt“ für Krebstherapien genutzt werden. WissenschafterInnen am CeMM Forschungszentrum für Molekulare Medizin der ÖAW sowie der Medizinischen Universität Wien konnten nun anhand einer neuen Wirkstoffbibliothek mit 243 Substanzen, die auf verschiedene zentrale Stoffwechselprozesse der Zelle abzielen, die Sensitivität von 15 myeloischen Leukämiezelllinien ermitteln. Die Ergebnisse liefern einen wichtigen pharmakologischen Ansatzpunkt für zukünftige Krebstherapien.

Quelle: IDW Informationsdienst Wissenschaft

Catch me if you can: Wie mRNA-Therapeutika in Zellen gelangen

Forscher entdecken, wo und wie mRNA in eine Zelle gelangt, um dort genetische Informationen zu verändern oder zu übermitteln – ein zentraler Aspekt für die Entwicklung neuer Therapien.

Quelle: IDW Informationsdienst Wissenschaft

Vielversprechender Ansatz zur Verbesserung der Darmkrebstherapie entdeckt

Darmkrebs verläuft im späten Stadium oft tödlich. Daher sind neue Therapieansätze erforderlich. Einem Forschungsteam der TU Kaiserslautern um den Toxikologen Prof. Dr. Jörg Fahrer ist es gelungen, mit der Substanz Devimistat einen Wirkstoffkandidaten zu identifizieren, der die Darmkrebstherapie verbessern kann. Das Team hat im Rahmen eines von der Wilhelm Sander-Stiftung geförderten Forschungsprojektes gezeigt, dass Devimistat vor allem in Darmkrebszellen seine toxische Wirkung entfaltet, indem es die Mitochondrien als Kraftwerke der Zelle angreift. Dadurch wird die Empfindlichkeit der Krebszellen gegenüber Zytostatika erhöht und das Ansprechen auf die Tumortherapie verbessert.

Quelle: IDW Informationsdienst Wissenschaft

Wenn die Luft dünn wird: Wie das Immunsystem auf Sauerstoffmangel reagiert

Jede Zelle des menschlichen Körpers ist auf Sauerstoff angewiesen. Wie aber reagiert unser Immunsystem auf einen Sauerstoffmangel? Beeinflusst dieser Faktor Entzündungsreaktionen oder die Tumorentstehung? Mit einem neuen interdisziplinären Forschungsansatz in einer Höhentrainingskammer wollen Wissenschaftler der Universität Duisburg-Essen diese Fragen beantworten.

Quelle: IDW Informationsdienst Wissenschaft

Wie Blut- und Leukämiezellen entstehen

Wissenschaftler*innen des Berlin Institute of Health in der Charité (BIH) und des MDC haben gemeinsam mit Kolleg*innen vom Heidelberger Institut für Stammzelltechnologien und Experimentelle Medizin (HI-STEM) am Deutschen Krebsforschungszentrum (DKFZ) sowie weiteren Forscher*innen aus Heidelberg und Barcelona die Entwicklung von Blutzellen detailliert nachverfolgt: Sie kombinierten Methoden, mit denen man die Aktivität der Gene innerhalb der Zelle analysiert mit dem Nachweis von Proteinmolekülen auf der Oberfläche der Zelle. Ihre Ergebnisse haben die Wissenschaftler*innen nun in der Zeitschrift Nature Immunology veröffentlicht.

Quelle: IDW Informationsdienst Wissenschaft

Ferngesteuert: Wie Gifte von Keimen gefährlich werden

Das Bakterium P. aeruginosa verursacht die häufigste Sekundärinfektion bei Krankenhauspatienten mit Grippe, COVID-19 oder Mukoviszidose und ist resistent gegen Antibiotika. Ein anderer bakterieller Krankheitserreger, Vibrio vulnificus, kommt in rohen Meeresfrüchten und Brackwasser vor und kann seltene, aber tödliche Folgen für den Menschen haben. Dabei vergiften die Krankheitserreger die Zellen mit Toxinen, die auch ExoY genannt werden. Im Inneren der Bakterien ist ExoY fast inaktiv, wird aber bis zu 10.000 mal potenter, wenn es erst einmal in die Zelle injiziert wird. Der genaue Mechanismus dahinter war bisher unbekannt.

Quelle: IDW Informationsdienst Wissenschaft

Mit optischer Pinzette den Lebenszyklus der Zelle erfühlen: Forschungsteam beobachtet veränderte Strukturen im Inneren

Menschen sind eine Ansammlung von Billionen lebender Zellen, die alle aus einer einzigen befruchteten Eizelle hervorgegangen sind. Die Zellteilung ist eine der grundlegendsten Prozesse des Lebens ist. Form und mechanische Eigenschaften von Zellen verändern sich bei der Teilung. Bislang war jedoch wenig darüber bekannt, was genau im Inneren der Zelle während der Zellteilung vor sich geht. Ein in Göttingen und Münster ansässiges Forschungsteam hat herausgefunden, dass das Innere der Zelle weicher und flüssiger wird, während es gleichzeitig während der Zellteilung weniger aktiv ist. Die Ergebnisse der Studie sind in der Fachzeitschrift Nature Physics erschienen.

Quelle: IDW Informationsdienst Wissenschaft

Licht an für die Kraftwerke der Zelle: CECAD Forschungszentrum leuchtet grün

Am Samstag, den 25. September, nehmen der Sonderforschungsbereich 1218, der die Regulation der zellulären Funktion durch Mitochondrien untersucht, und das Exzellenzcluster für Alternsforschung CECAD an der weltweiten Aktion „Light Up for Mito“ teil. Ab 20 Uhr leuchtet das CECAD Forschungszentrum grün.

Quelle: IDW Informationsdienst Wissenschaft

Wie das Stutzen des Zytoskeletts die Zelle bewegt

Unsere Zellen zeichnen sich durch Stabilität aus und sind dennoch hoch flexibel. Sie können ihre Form verändern und sich sogar im Gewebe bewegen. Die dafür benötigten Kräfte entstehen durch ein dynamisches Netzwerk aus verzweigten Aktinfilamenten, dem Zytoskelett. Ein interdisziplinäres Team um Peter Bieling und Stefan Raunser vom Max-Planck-Institut für molekulare Physiologie (MPI) in Dortmund hat nun einen bisher unbekannten Mechanismus aufgedeckt, der erklärt, wie das Kappen von alten Aktinfilamenten das Wachstum neuer Filamente fördert. So werden die Struktur und die Funktion des Zytoskeletts aufrechterhalten, genau wie beim Rückschnitt der Hecke im Garten.

Quelle: IDW Informationsdienst Wissenschaft

Warum ein mutierter Kaliumkanal in roten Blutzellen zur Blutarmut führen kann

Eine Variante der Blutarmut (Anämie) ist die so genannte Gárdos Channelopathy, eine durch Genmutation ausgelöste Fehlfunktion so genannter Gárdos-Kanäle. Durch diese gelangen Kalium-Ionen aus den roten Blutzellen hinaus. Ist die Funktion der Kanäle gestört, wirkt sich das auch auf die Calcium-Konzentration der Zellen aus. Mit schwerwiegenden Folgen: Zu viel Calcium lässt die Zelle sterben. In der Folge kommt es dann zur Anämie. Forscher der Saar-Uni haben den Zusammenhang zwischen Kalium- und Calciumströmen bei dieser genetischen Mutation nun untersucht und im Fachjournal Blood Advances veröffentlicht.

Quelle: IDW Informationsdienst Wissenschaft

Lebenswichtiges Metall – wie wird Molybdän biologisch nutzbar?

Das Metall Molybdän ist als Bestandteil von Molybdän-Stahl oder als Molybdänsulfid, einem Additiv von Motorölen, bekannt. Neben diesen technischen Anwendungen hat Molybdän auch eine wichtige biologische Funktion: In der Zelle ist es Bestandteil des sogenannten Molybdäncofaktors. Kommt es zu Mutationen in einem für die Biosynthese des Molybdäncofaktors wichtigen Enzym, der sogenannten Molybdän-Insertase, hat dies drastische und schließlich tödliche Folgen für den betroffenen Patienten. Das Team um Dr. Tobias Kruse von der TU Braunschweig hat herausgefunden, wie die Molybdän-Insertase Molybdän in den Molybdäncofaktor einbaut und damit die Grundlage für einen Therapieansatz geschaffen.

Quelle: IDW Informationsdienst Wissenschaft

Programmierter Zelltod von Tumorzellen durch synthetische RNA-Moleküle

Für Körperzellen ist es überlebenswichtig, dass sie das Eindringen von Viren erkennen, um sich vor ihnen zu schützen. Im Gegensatz zur menschlichen Zelle, deren Erbsubstanz aus Desoxyribonukleinsäure (DNA) besteht, ist der Informationsträger bei Viren oft die Ribonukleinsäure (RNA). Allerdings nutzt auch die menschliche Zelle RNA, etwa bei der Produktion von Proteinen. Daher ist es entscheidend zu erkennen, ob es sich um eigene oder „feindliche“ RNA handelt.

Quelle: IDW Informationsdienst Wissenschaft

Flashmob im Zellkern

Der Zellkern ist weit mehr als eine Art Aufbewahrungs-Behälter für Chromosomen: In ihm sitzt auch die komplexe Maschinerie, die Abschriften der gerade benötigten Gene herstellt und in die Zelle entlässt. Manche der daran beteiligten Proteine sind nicht gleichmäßig im Kern verteilt, sondern sammeln sich an bestimmten Stellen. Eine Studie der Universitäten Würzburg, Heidelberg und Bonn mit Hilfe der Evotec SE am Standort Martinsried zeigt nun, wie diese „Flashmobs“ reguliert werden. Aus den Ergebnissen könnten langfristig auch neue Therapie-Ansätze der spinalen Muskelatrophie resultieren. Sie sind in der Zeitschrift Cell Reports erschienen.

Quelle: IDW Informationsdienst Wissenschaft

Fortschritt bei der genetischen Analyse von Mäusen

Um zu verstehen, welche Rolle ein Gen in Entwicklung, Degeneration und Krankheit spielt, nutzen BiologInnen seit hundert Jahren einen Trick der Natur: Während das Genom in allen Zellen eines Organismus prinzipiell gleich ist, können in einzelnen Zellen Mutationen auftreten. Durch diese Mutationen unterscheidet sich eine Zelle von ihren Nachbarn, und der Organismus bildet ein „genetisches Mosaik“. Nun hat Simon Hippenmeyer, Professor am Institute of Science and Technology Austria (IST Austria), die genetische Mosaikanalyse weiterentwickelt. Sie machen fast alle Gene im Mausgenom für die genetische Mosaikanalyse in einer Zelle zugänglich.

Quelle: IDW Informationsdienst Wissenschaft

Niclosamid: Forscher testen Bandwurmmittel gegen Corona

Wenn der Sars-CoV-2-Erreger eine Zelle befällt, programmiert er deren Stoffwechsel um. Forscher haben sich diesen Prozess jetzt im Detail angesehen. Dabei sind ihnen interessante Wirkstoffe aufgefallen.

Quelle: SPIEGEL ONLINE

SARS-CoV-2-Forschung: Zweiter möglicher Wirkmechanismus von Remdesivir entdeckt

Bei der Infektion einer Zelle sorgt SARS-CoV-2 nicht nur dafür, dass die Wirtszelle neue Viruspartikel herstellt. Das Virus unterdrückt auch Abwehrmechanismen der Wirtszelle. Dabei spielt das Virenprotein nsP3 eine zentrale Rolle. Durch Strukturanalysen haben Forscher:innen der Goethe-Universität jetzt in Kooperation mit dem schweizerischen Paul-Scherrer-Institut herausgefunden, dass ein Abbauprodukt des Virostatikums Remdesivir an nsP3 bindet. Dies deutet auf einen weiteren, bislang unbekannten Wirkmechanismus von Remdesivir hin, der wichtig für die Entwicklung neuer Medikamente gegen SARS-CoV-2 und andere RNA-Viren sein könnte.

Quelle: IDW Informationsdienst Wissenschaft

Beeinflussen Purine die Krebsentstehung?

Zahlreiche Entstehungsprozesse von Krankheiten stehen in Verbindung mit der epigenetischen Regulation. Ein Protein, das im Prozess dieser Regulation involviert ist und als wichtiger Krebsmarker identifiziert wurde, ist BRD4. Eine aktuell in Nature Metabolism publizierte Studie des CeMM Forschungszentrums für Molekulare Medizin der Österreichischen Akademie der Wissenschaften zeigt nun, dass die Zufuhr von Purinen sowie die Purin-Synthese einer Zelle die BRD4-Aktivität beeinflussen und somit eine Rolle im Krebsentstehungsprozess spielen können.

Quelle: IDW Informationsdienst Wissenschaft

Forschungsteam unter Leitung der Universität Göttingen entdeckt neuartigen „An/Aus“-Schalter in Proteinen

Proteine erfüllen in der Zelle eines jeden Lebewesens eine Vielzahl von Funktionen und spielen bei fast allen biologischen Prozessen eine entscheidende Rolle. Sie steuern nicht nur den Stoffwechsel, die zelluläre Signalübertragung und die Energieproduktion, sondern sind als Antikörper auch die Frontarbeiter unseres Immunsystems im Kampf gegen Krankheitserreger wie das Coronavirus. Angesichts dieser wichtigen Aufgaben ist es nicht verwunderlich, dass die Aktivität der Proteine streng kontrolliert wird. Es gibt zahlreiche chemische Schalter, die die Struktur und damit die Funktion von Proteinen als Reaktion auf wechselnde Umweltbedingungen und Stress steuern.

Quelle: IDW Informationsdienst Wissenschaft

Wie SARS-Coronaviren die menschliche Zelle zum eigenen Vorteil umfunktionieren

Coronavirus-Forscherinnen und -Forscher um Prof. Rolf Hilgenfeld von der Universität zu Lübeck und Privatdozent Dr. Albrecht von Brunn von der Ludwigs-Maximilians-Universität München, beides Forscher am Deutschen Zentrum für Infektionsforschung (DZIF), konnten einen Forschungserfolg im angesehenen „EMBO Journal“ publizieren: Sie fanden heraus, wie SARS-Viren die Herstellung viraler Proteine in infizierten Zellen so anregen, dass viele neue Kopien des Virus gebildet werden können. Andere Coronaviren als SARS-CoV und SARS-CoV-2 verfügen nicht über diesen Mechanismus, so dass hier eine Erklärung für die ungleich höhere Pathogenität der SARS-Viren liegen könnte.

Quelle: IDW Informationsdienst Wissenschaft

Altruismus in der Zelle

Jena/Barcelona. Infektionen durch Hefepilze der Gattung Candida lösen eine Immunantwort aus, die bisher ausschließlich bei der Abwehr von Viren, Bakterien oder Parasiten bekannt war. Ein Forschungsteam aus Jena und Barcelona identifizierte einen Mechanismus, der zur Behandlung der Infektion beitragen könnte, wie die Wissenschaftler*innen in der Zeitschrift Nature Microbiology berichten.

Quelle: IDW Informationsdienst Wissenschaft

Analyse von Krebsstammzellen auf Einzelzellebene

Mit einem neuen Verfahren lassen sich Stammzellen und Krebsstammzellen auf der Einzelzellebene untersuchen und die daraus hervorgehenden Zellklone direkt nachverfolgen. Entwickelt wurde die Methode von Wissenschaftlern vom Stammzellinstitut HI-STEM*, vom Deutschen Krebsforschungszentrum (DKFZ), vom European Molecular Biology Laboratory (EMBL) und vom Zentrum für Genomregulation in Barcelona. Die Forscher kombinierten die Analyse der genomischen Krebs-Mutationen mit den assoziierten Expressionsprofilen in jeweils derselben Zelle. Auf diese Weise untersuchten sie tausende von Einzelzellen parallel.

Quelle: IDW Informationsdienst Wissenschaft