Better results through less stress

Alternative approach to the study of neuroinfections

The central nervous system, and in particular the brain, is an especially protected area of the body. It contains special immune cells called microglia that survey and respond to danger signals. A team of researchers from the Institute for Experimental Infection Research at TWINCORE in Hannover has now been able to show that previous approaches to studying microglia can alter their activation status. In a recent publication in the Journal of Neuroinflammation, they propose an alternative method.

Quelle: IDW Informationsdienst Wissenschaft

Mind Over Microbiome: How Mental States Impact Gut Health

A groundbreaking study has uncovered a critical brain-gut connection that links psychological states to changes in the gut microbiome, with profound implications for immune function and stress-related health conditions. The research, now published in the journal Cell, reveals how stress-sensitive brain circuits influence the composition of gut bacteria through Brunner’s glands in the small intestine. It sheds light on the intricate mechanisms by which mental states can impact physical health, pointing to new possibilities for therapeutic intervention, for example against inflammatory bowel disease.

Quelle: IDW Informationsdienst Wissenschaft

Cortex in a dish: new brain organoid model replicates human cortical domains

Brain organoids provide unique insights into the human brain. Now, the group of Jürgen Knoblich at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences, developed a new method that allows scientists to cultivate brain organoids with distinct cortical areas and front-to-back patterning. Together with collaborators at the Human Technopole and the University of Milan-Bicocca, they reported a method that gives scientists a deeper look into human-specific brain development and disorders. The new method is reported in Nature Methods on September 18.

Quelle: IDW Informationsdienst Wissenschaft

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance – which is often also referred to as the feel-good hormone – ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”

Quelle: IDW Informationsdienst Wissenschaft

Missing IER3IP1 protein leads to severe brain developmental disease

A study by the Kaether research group at the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena sheds light on the molecular mechanisms of a rare and usually fatal hereditary disease called MEDS1. The study entitled „IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport“, now published in the open access journal „Cellular and Molecular Life Sciences“, show for the first time that the absence of IER3IP1 or its mutation causes defective transport of certain proteins that are essential for the development and survival of nerve cells.

Quelle: IDW Informationsdienst Wissenschaft

Decoding the ageing brain – Changes in gene activity detected in different cell types

Ageing is a complex biological process that also takes place in the brain. Researchers have discovered that the gene activity changes in different cell types in the brain. A certain type of neuron is particularly affected. In the long term, the findings could provide starting points for slowing down the ageing process and delaying neurodegenerative diseases such as Alzheimer’s-type dementia.

Quelle: IDW Informationsdienst Wissenschaft

How zebrafish map their environment: spatial orientation mechanisms surprisingly similar to our own

Researchers are turning to zebrafish to unlock the secrets of place cells, which play a crucial role in forming mental maps of space, social networks, and abstract relationships. Until now, place cells have only been found in mammals and birds, leaving the question of how other species internally represent the external world largely unanswered. A team of researchers at the Max Planck Institute for Biological Cybernetics has now found the first compelling evidence for place cells in the brain of the tiny larval zebrafish.

Quelle: IDW Informationsdienst Wissenschaft

Brain research: Study shows what your favourite film genres reveal about your brain

Crime films, action films, comedies, or documentaries? A person’s favourite film genre reveals a lot about how their brain works. This is the finding of a new study led by the Martin Luther University Halle-Wittenberg (MLU) that compared data on film preferences with recordings of the brain activity of around 260 people. Fans of action films and comedies reacted very strongly to negative emotional stimuli, while participants who favoured documentaries or crime films and thrillers had a significantly weaker reaction. The results were published in the journal „Frontiers in Behavioral Neuroscience“.

Quelle: IDW Informationsdienst Wissenschaft

Anti-ageing and increased mental capacity through cannabis

Bonn researchers clarify the influence of treatment with tetrahydrocannabinol on the metabolic switch mTOR: A low-dose long-term administration of cannabis can not only reverse aging processes in the brain, but also has an anti-aging effect. Researchers from the University Hospital Bonn (UKB) and the University of Bonn together with a team from Hebrew University (Israel) have now been able to show this in mice. They found the key to this in the protein switch mTOR, whose signal strength has an influence on cognitive performance and metabolic processes in the entire organism. The results are now presented in the journal „ACS Pharmacology & Translation Science“.

Quelle: IDW Informationsdienst Wissenschaft

Platelets Under Control: Protecting Heart and Brain More Effectively After an Infarction

New Highly Effective Thrombosis Inhibitor in Sight
Würzburg scientists present promising GPVI inhibitor EMA601 for efficient prevention and treatment of arterial thrombosis and inflammatory reactions without increased bleeding risk

Quelle: IDW Informationsdienst Wissenschaft

The Hidden Architect: How nuclei organize the eyes and brain

Inside each cell, individual structures known as organelles perform key functions, but how these organelles contribute to the formation of tissues and organs is unknown. Groundbreaking research from the Campàs group at the Cluster of Excellence Physics of Life of TU Dresden now reveals that the cell’s nucleus controls the stiffness of eye and brain tissues, and even the ordered arrangements of cells in them. These results add a new role for the cell’s nucleus in tissue organization, well beyond its established role in genetic regulation.

Quelle: IDW Informationsdienst Wissenschaft

Alzheimer’s disease: It’s not only neurons – glial cells also produce harmful proteins

Memory loss, confusion, speech problems – Alzheimer’s disease is the most common cause of dementia, affecting about 35 million people worldwide, and the number is growing. The protein amyloid beta, which occurs naturally in the brain, plays a central role in the disease: It accumulates in patients in insoluble clumps that form plaques between neurons in the brain, damaging them. Researchers at the Max Planck Institute (MPI) for Multidisciplinary Sciences have now shown that, in addition to neurons, special glial cells in the brain also produce amyloid beta. This finding could open up new avenues for future therapies.

Quelle: IDW Informationsdienst Wissenschaft

World Brain Day 2024: Zu viel Zucker versalzt die Hirngesundheit

Der internationale „World Brain Day“ am 22. Juli 2024 stellt die Prävention von neurologischen Erkrankungen wie Parkinson, Demenz, Schlaganfall oder Migräne in den Vordergrund. Allein 40 % aller Demenzfälle und 90 % aller Schlaganfälle wären vermeidbar. Dennoch steigt weltweit die Krankheitslast von neurologischen Krankheiten – verstärkte Anstrengungen in Sachen Prävention sind also dringend erforderlich. Die Deutsche Gesellschaft für Neurologie (DGN) und die Deutsche Hirnstiftung möchten anlässlich des Aktionstags den Fokus auf den viel zu hohen Zuckerkonsum lenken. Denn er schädigt die Hirngesundheit.

Quelle: IDW Informationsdienst Wissenschaft

Odors are encoded in rings in the brain of migratory locusts

In a new study published in the journal Cell, a team of researchers from the Max Planck Institute for Chemical Ecology in Jena, Germany, describes for the first time how odors are encoded in the antennal lobe, the olfactory center in the brain of migratory locusts. Using transgenic locusts and imaging techniques, the researchers were able to show a ring-shaped representation of odors in the brain. The pattern of olfactory coding in the antennal lobe is the same at all stages of locust development. A better understanding of olfactory coding in the locust brain should help to learn more about how the behavior of these insects is controlled, especially their swarming.

Quelle: IDW Informationsdienst Wissenschaft

First model of the brain’s information highways developed

Our human brain is not only bigger and contains more neurons than the brains of other species, but it is also connected in a special pattern: Thick bundles of neurons connect brain regions across long distances, such as the right and left brain hemispheres. A team of researchers at IMBA, including Catarina Martins-Costa, Nina Corsini and Jürgen Knoblich, now presents the first organoid model in which these information highways can be studied. Their results are published on May 7th in the journal Cell Stem Cell.

Quelle: IDW Informationsdienst Wissenschaft

Advanced Brain Science Without Coding Expertise

Researchers at Helmholtz Munich and the LMU University Hospital Munich introduce DELiVR, offering a new AI-based approach to the complex task of brain cell mapping. The deep learning tool democratizes advanced neuroscience by eliminating the need for coding expertise. DELiVR empowers biologists to investigate disease-related spatial cell dynamics efficiently, fostering the development of precision therapies for enhanced patient care.

Quelle: IDW Informationsdienst Wissenschaft

The language of the brain: How memories guide us to rewards

Now in spring, some of us have a particular craving for ice cream. Picture this: You want to take a walk to your favourite ice cream parlour for the first time after winter. You can probably remember how to get there. How does our brain guide us to such rewarding places? In a study recently published in the journal Nature Communications, researchers from the Leibniz Institute of Neurobiology (LIN) in Magdeburg used state-of-the-art methods to answer this question. They discovered that our brain uses a special code to guide us to places that promise rewards.

Quelle: IDW Informationsdienst Wissenschaft

Fuelling nerve cell function and plasticity

New finding from scientists at the University of Cologne discloses how mitochondria control tissue rejuvenation and synaptic plasticity in the adult mouse brain / publication in ‘Neuron’

Quelle: IDW Informationsdienst Wissenschaft

Nerve Cells “Old at Heart” — Key Molecules Persist Throughout Life

Most human nerve cells last a lifetime without renewal. A trait echoed within the cells’ components, some enduring as long as the organism itself. New research by Martin Hetzer, molecular biologist and president of the Institute of Science and Technology Austria (ISTA), and colleagues discovered RNA, a typical transient molecule, in the nerve cells of mice that remain stable for their entire lives. Published in Science, these findings contribute to unraveling the complexities of brain aging and associated diseases.

Quelle: IDW Informationsdienst Wissenschaft

A brain circuit that spoils your appetite

Satiety, nausea or anxiety can all lead to a loss of appetite. Delaying eating can be a healthy move by the body to prevent further damage and to gain time for regenerating. Researchers at the Max Planck Institute for Biological Intelligence now identified the circuit in the brain that prevents mice from eating when they feel nauseous. The decisive role is played by special nerve cells in the amygdala – a brain region involved when emotions run high. The cells are activated during nausea and elicit appetite-suppressing signals. The findings highlight the complex regulation of eating behavior, as the loss of appetite during nausea is controlled by different circuits than during satiety.

Quelle: IDW Informationsdienst Wissenschaft

TU Dresden Researchers Identify Factor Involved in Brain Expansion in Humans

What makes us human? According to neurobiologists it is our neocortex. This outer layer of the brain is rich in neurons and lets us do abstract thinking, create art, and speak complex languages. An international team led by Dr. Mareike Albert at the Center for Regenerative Therapies Dresden (CRTD) of TUD Dresden University of Technology has identified a new factor that might have contributed to neocortex expansion in humans. The results were published in the EMBO Journal.

Quelle: IDW Informationsdienst Wissenschaft

FAU: Eating, socializing or exploring: How the brain switches between different behaviors

How does our brain switch between different behaviors? A current study has now provided the first answers to this key question in neuroscience. Using mice, the researchers investigated electrical activity in a certain area within the brain. Results were then analyzed with the help of an adaptive computer algorithm. This artificial intelligence identified a type of typical fingerprint in the signals. Analyzing this signal allowed researchers to predict which behavior the animals would switch to next, two seconds before they actually made the change. The results have now been published in the journal Nature Neuroscience.*

Quelle: IDW Informationsdienst Wissenschaft

Insights into epigenetics: Mouse as a model organism

The FKBP5 gene is associated with stress-related psychiatric disorders. Not only the gene itself, but also epigenetic changes are possible biomarkers for the long-term consequences of stress. The underlying mechanisms cannot yet be determined in humans. Previous research suggests that the mouse is a suitable model organism for investigating the influences of genetics, the environment and their interaction in brain tissue. Scientists have now provided the first evidence that epigenetic changes – crucial key elements for the regulation of genes – can also be investigated in the so-called humanized FKBP5 mouse model.

Quelle: IDW Informationsdienst Wissenschaft

Pharmacological Inhibitor Protects Nerve Cells in ALS Disease

A new pharmacological inhibitor can intervene in a central cell death mechanism that is responsible for the death of motor neurons and hence important for the progression of the motor neuron disease amyotrophic lateral sclerosis (ALS). A research team led by Prof. Dr Hilmar Bading, neurobiologist at Heidelberg University, examined a neuroprotective molecule that belongs to a novel drug class. It is able to inhibit the interactions of certain proteins and has been successfully tested in a mouse model of ALS and in brain organoids of ALS patients.

Quelle: IDW Informationsdienst Wissenschaft

Stress Influences Brain and Psyche Via Immune System

Chronic stress affects the immune system and the brain. UZH researchers now show that a particular enzyme found in cells of the immune system enters the brain under stress. In mice, it causes them to withdraw and avoid social contact. This newly discovered connection between body and mind in stress-related mental illnesses could lead to new treatments for depression.

Quelle: IDW Informationsdienst Wissenschaft