Schlagwort: RNA
Antiviral defence regulates intestinal function and overall gut health
Anti-virale Abwehr reguliert Darmfunktion und Gesundheit
Two-billion-year-old enzyme reconstructed – Detective work by molecular biologists and bioinformatics researchers
Longer life due to faulty RNA processing
The control of RNA metabolism is crucial to the regulation of animal longevity, researchers from the Max Planck Institute for Biology of Ageing in Cologne have now discovered. They found that worms live longer when certain RNAs are processed differently during RNA maturation. This could be an additional way for organisms to control the ageing process.
RNA-Markierungen in Mitochondrien fördern invasive Ausbreitung von Krebs
Blockierten die Forscher in Krebszellen das für die RNA-Markierungen verantwortliche Enzym, so reduzierte dies die Anzahl der Metastasen. Auch Antibiotika, die die Proteinsynthese in den Mitochondrien unterdrücken, konnten die invasive Ausbreitung von Krebszellen im Laborversuch verhindern.
DNA-Austausch zwischen Zellen: Welche Rolle spielen Exosomen in der Entwicklung von Krebs?
New “decision aid” for CRISPR immune responses
A possible new COVID-19 vaccine could be accessible for more of the world
RNA molecules control repair of human DNA in cancer cells
Cinderella of chemical biology
Research advances knowledge of the battle between viruses and human cells
How a fungus hijacks our immune system
RNA ‘heroes’ can disarm bad-actor proteins in leukemia
Genome study finds unexpected variation in a fundamental RNA gene
RNA therapy for heart failure and organ fibrosis
An unexpected attraction of nucleic acids and fat
‚Supermeres‘ may carry clues to cancer, Alzheimer’s disease and COVID-19
New strategy against treatment-resistant prostate cancer identified
Engineers devise a way to selectively turn on RNA therapies in human cells
Sind zuckerhaltige RNA-Moleküle als Signalstoffe für das Immunsystem unterwegs?
Die RNA hat viele wichtige Funktionen in unserem Körper und wird seit kurzem auch als Corona-Impfstoff genutzt. Doch das Lebensmolekül ist längst noch nicht lückenlos durchschaut. Sind zuckerhaltige RNA-Moleküle als Signalstoffe für das Immunsystem unterwegs?
Researchers identify new drug target for blood cancer, potentially solid tumors
Super-enhancers: The villain fueling certain cancers
A global assessment of cancer genomic alterations in epigenetic mechanisms
Muhammad A Shah, Emily L Denton, Cheryl H Arrowsmith, Mathieu Lupien and Matthieu Schapira
Abstract
Background
The notion that epigenetic mechanisms may be central to cancer initiation and progression is supported by recent next-generation sequencing efforts revealing that genes involved in chromatin-mediated signaling are recurrently mutated in cancer patients.
Results
Here, we analyze mutational and transcriptional profiles from TCGA and the ICGC across a collection 441 chromatin factors and histones. Chromatin factors essential for rapid replication are frequently overexpressed, and those that maintain genome stability frequently mutated. We identify novel mutation hotspots such as K36M in histone H3.1, and uncover a general trend in which transcriptional profiles and somatic mutations in tumor samples favor increased transcriptionally repressive histone methylation, and defective chromatin remodeling.
Conclusions
This unbiased approach confirms previously published data, uncovers novel cancer-associated aberrations targeting epigenetic mechanisms, and justifies continued monitoring of chromatin-related alterations as a class, as more cancer types and distinct cancer stages are represented in cancer genomics data repositories.
Continue reading „A global assessment of cancer genomic alterations in epigenetic mechanisms“ →
Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci
Daniel Smeets, Yolanda Markaki, Volker J Schmid, Felix Kraus, Anna Tattermusch, Andrea Cerase, Michael Sterr, Susanne Fiedler, Justin Demmerle, Jens Popken, Heinrich Leonhardt, Neil Brockdorff, Thomas Cremer1, Lothar Schermelleh and Marion Cremer
Abstract
Background
A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs).
Results
We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion.
Conclusions
3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.