Es regnet Gene und Viren

Ein molekulares Schlaraffenland im Darm des Menschen: Die kolorierten Mikroben sind nur ein winziger Ausschnitt dessen, was die lebenswichtige Darmflora ausmacht.

Unsere Umwelt sehen Metagenomiker als Quelle unentdeckter Viren und Keime: Wie Big-Data-Biologen die Welt genetisch neu vermessen.

Quelle: FAZ.NET

Gene regulation in mammals offers clues connecting pregnancy and cancer metastasis

In many mammals including humans, the placenta invades the wall of the uterus during pregnancy in the same way that cancer cells invade surrounding tissues. Using genomic sequences and gene expression information, researchers were able to predict specific signaling proteins that drive the expression of genes that decrease the susceptibility of invasion in human cells. Using a custom fabricated bio chip, the researchers confirmed that these predicted proteins did in fact decrease the invasion of both cancer and placental cells.

Quelle: Sciencedaily

Coronavirus: Die Gene spielen beim Verlust des Geruchssinns mit

Eine Störung des Geruchs- und Geschmackssinns trifft manche Covid-Infizierte wahrscheinlicher als andere. US-Forscher können nun eingrenzen, welche Erbanlagen das Risiko erhöhen.

Quelle: SPIEGEL ONLINE

Gene Network changes associated with cancer onset and progression identify new candidates for targeted gene therapy

Researchers have identified novel changes in gene network interactions associated with cancer that may lead to new treatment targets for chemotherapy. Their work shows that more than 90% of changes in gene network interactions in nine types of cancer studied are not detectable by current tests focused on changes in gene expression.

Quelle: Sciencedaily

A global assessment of cancer genomic alterations in epigenetic mechanisms

Muhammad A Shah, Emily L Denton, Cheryl H Arrowsmith, Mathieu Lupien and Matthieu Schapira

Abstract

Background

The notion that epigenetic mechanisms may be central to cancer initiation and progression is supported by recent next-generation sequencing efforts revealing that genes involved in chromatin-mediated signaling are recurrently mutated in cancer patients.

Results

Here, we analyze mutational and transcriptional profiles from TCGA and the ICGC across a collection 441 chromatin factors and histones. Chromatin factors essential for rapid replication are frequently overexpressed, and those that maintain genome stability frequently mutated. We identify novel mutation hotspots such as K36M in histone H3.1, and uncover a general trend in which transcriptional profiles and somatic mutations in tumor samples favor increased transcriptionally repressive histone methylation, and defective chromatin remodeling.

Conclusions

This unbiased approach confirms previously published data, uncovers novel cancer-associated aberrations targeting epigenetic mechanisms, and justifies continued monitoring of chromatin-related alterations as a class, as more cancer types and distinct cancer stages are represented in cancer genomics data repositories.

Continue reading „A global assessment of cancer genomic alterations in epigenetic mechanisms“

A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine

Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming

Wallace hypothesized mitochondrial dysfunction as a central role in a wide range of age-related disorders and various forms of cancer. Steadily rising increases in mitochondrial DNA mutations cause abrupt shifts in diseases. Discrete changes in nuclear gene expression in response to small increases in DNA mutant level are analogous to the phase shifts that is well known in physics: As heat is added, the ice abruptly turns to water or with more heat abruptly to steam. Therefore, a quantitative change that is an increasing proportion of mitochondrial DNA mutation results in a qualitative change  which coordinate changes in nuclear gene expression together with discrete changes in clinical symptoms.

 Wallace DC (2005) A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine. Annu Rev Genet. 2005 ; 39: 359. doi:10.1146/annurev.genet.39.110304.095751

Picard M et. Al (2014) Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. PNAS E4033–E4042, doi: 10.1073/pnas.1414028111

Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

3D-SIM-based DAPI intensity classification in the Barr body versus the entire nucleus of C2C12 cells. (A) Mid z-section of a DAPI-stained nucleus. The area below the dashed line illustrates the resolution level obtained by wide-field deconvolution microscopy, for comparison. Inset magnifications show the non-uniformly compacted structure of the Barr body resolvable with 3D-SIM (1) and an arbitrary autosomal region with CDCs (2). Scale bars: 5 μm, insets 1 μm. (B) X chromosome-specific painting (green) of Xi (left) and Xa territories (right) of the same nucleus in different z-sections. Note the high convergence between the painted Xi and the DAPI visualized Barr body (arrowheads). Scale bars: 2 μm, insets 1 μm. (C) 3D DAPI intensity classification exemplified for the nucleus shown in (A). Seven DAPI intensity classes displayed in false-color code ranging from class 1 (blue) representing pixels close to background intensity, largely representing the IC, up to class 7 (white) representing pixels with highest density, mainly associated with chromocenters. Framed areas of the Barr body (inset 1) and a representative autosomal region (inset 2) are shown on the right at resolution levels of 3D-SIM, deconvolution and conventional wide-field microscopy. The Xi territory pervaded by lower DAPI intensities becomes evident only at 3D-SIM resolution, whereas both wide-field and deconvolution microscopy imply a concentric increase of density in the Barr body. In the autosomal region, chromatin assigned to classes 2 to 3 lines compacted CDCs, represented by classes 4 to 6. (D) Left: average DAPI intensity classification profiles with standard deviations evaluated for entire nuclear volumes or the Barr body region only (dark grey bars). Right: over/underrepresentation of the average DAPI intensity class fraction sizes in the Barr body versus entire nuclear volumes (n = 12). Distribution differences on classes between Xi and entire nucleus P <0.001. 3D-SIM, three-dimensional structured illumination microscopy; CDC, chromatin domain cluster; DAPI, 4',6-diamidino-2-phenylindole; FISH, fluorescence in situ hybridization; IC, interchromatin compartment; Xa, active X chromosome; Xi, inactive X chromosome. Smeets et al. Epigenetics & Chromatin 2014 7:8   doi:10.1186/1756-8935-7-8
3D-SIM-based DAPI intensity classification in the Barr body versus the entire nucleus of C2C12 cells. (A) Mid z-section of a DAPI-stained nucleus. The area below the dashed line illustrates the resolution level obtained by wide-field deconvolution microscopy, for comparison. Inset magnifications show the non-uniformly compacted structure of the Barr body resolvable with 3D-SIM (1) and an arbitrary autosomal region with CDCs (2). Scale bars: 5 μm, insets 1 μm. (B) X chromosome-specific painting (green) of Xi (left) and Xa territories (right) of the same nucleus in different z-sections. Note the high convergence between the painted Xi and the DAPI visualized Barr body (arrowheads). Scale bars: 2 μm, insets 1 μm. (C) 3D DAPI intensity classification exemplified for the nucleus shown in (A). Seven DAPI intensity classes displayed in false-color code ranging from class 1 (blue) representing pixels close to background intensity, largely representing the IC, up to class 7 (white) representing pixels with highest density, mainly associated with chromocenters. Framed areas of the Barr body (inset 1) and a representative autosomal region (inset 2) are shown on the right at resolution levels of 3D-SIM, deconvolution and conventional wide-field microscopy. The Xi territory pervaded by lower DAPI intensities becomes evident only at 3D-SIM resolution, whereas both wide-field and deconvolution microscopy imply a concentric increase of density in the Barr body. In the autosomal region, chromatin assigned to classes 2 to 3 lines compacted CDCs, represented by classes 4 to 6. (D) Left: average DAPI intensity classification profiles with standard deviations evaluated for entire nuclear volumes or the Barr body region only (dark grey bars). Right: over/underrepresentation of the average DAPI intensity class fraction sizes in the Barr body versus entire nuclear volumes (n = 12). Distribution differences on classes between Xi and entire nucleus P Smeets et al. Epigenetics & Chromatin 2014 7:8 doi:10.1186/1756-8935-7-8

Daniel Smeets, Yolanda Markaki, Volker J Schmid, Felix Kraus, Anna Tattermusch, Andrea Cerase, Michael Sterr, Susanne Fiedler, Justin Demmerle, Jens Popken, Heinrich Leonhardt, Neil Brockdorff, Thomas Cremer1, Lothar Schermelleh and Marion Cremer

Abstract

Background

A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs).

Results

We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion.

Conclusions

3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.

Continue reading „Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci“

The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats

Non-neoplastic histopathological findings in the abdominal cavity. A: High-power view of anti-podoplanin immunohistochemistry showing single MWCNT A (high dose) nanotubes in the tissue (arrows). B: High-power view of anti-podoplanin immunohistochemistry showing single asbestos fibers in the tissue (arrows). C: H & E, high-power view of granuloma induced by MWCNT A (low dose) nanotubes including single nanotube (arrow, 25×). D: H & E, high-power view of granuloma induced by asbestos including single fiber (arrow, 40×). Rittinghausen et al. Particle and Fibre Toxicology 2014 11:59   doi:10.1186/s12989-014-0059-z
Non-neoplastic histopathological findings in the abdominal cavity. A: High-power view of anti-podoplanin immunohistochemistry showing single MWCNT A (high dose) nanotubes in the tissue (arrows). B: High-power view of anti-podoplanin immunohistochemistry showing single asbestos fibers in the tissue (arrows). C: H & E, high-power view of granuloma induced by MWCNT A (low dose) nanotubes including single nanotube (arrow, 25×). D: H & E, high-power view of granuloma induced by asbestos including single fiber (arrow, 40×).
Rittinghausen et al. Particle and Fibre Toxicology 2014 11:59 doi:10.1186/s12989-014-0059-z

Susanne Rittinghausen, Anja Hackbarth, Otto Creutzenberg, Heinrich Ernst, Uwe Heinrich, Albrecht Leonhardt and Dirk Schaudien

Abstract

Background

Biological effects of tailor-made multi-walled carbon nanotubes (MWCNTs) without functionalization were investigated in vivo in a two-year carcinogenicity study. In the past, intraperitoneal carcinogenicity studies in rats using biopersistent granular dusts had always been negative, whereas a number of such studies with different asbestos fibers had shown tumor induction. The aim of this study was to identify possible carcinogenic effects of MWCNTs. We compared induced tumors with asbestos-induced mesotheliomas and evaluated their relevance for humans by immunohistochemical methods.

Methods

A total of 500 male Wistar rats (50 per group) were treated once by intraperitoneal injection with 109 or 5 × 109 WHO carbon nanotubes of one of four different MWCNTs suspended in artificial lung medium, which was also used as negative control. Amosite asbestos (108 WHO fibers) served as positive control. Morbid rats were sacrificed and necropsy comprising all organs was performed. Histopathological classification of tumors and, additionally, immunohistochemistry were conducted for podoplanin, pan-cytokeratin, and vimentin to compare induced tumors with malignant mesotheliomas occurring in humans.

Results

Treatments induced tumors in all dose groups, but incidences and times to tumor differed between groups. Most tumors were histologically and immunohistochemically classified as malignant mesotheliomas, revealing a predominantly superficial spread on the serosal surface of the abdominal cavity. Furthermore, most tumors showed invasion of peritoneal organs, especially the diaphragm. All tested MWCNT types caused mesotheliomas. We observed highest frequencies and earliest appearances after treatment with the rather straight MWCNT types A and B. In the MWCNT C groups, first appearances of morbid mesothelioma-bearing rats were only slightly later. Later during the two-year study, we found mesotheliomas also in rats treated with MWCNT D – the most curved type of nanotubes. Malignant mesotheliomas induced by intraperitoneal injection of different MWCNTs and of asbestos were histopathologically and immunohistochemically similar, also compared with mesotheliomas in man, suggesting similar pathogenesis.

Conclusion

We showed a carcinogenic effect for all tested MWCNTs. Besides aspect ratio, curvature seems to be an important parameter influencing the carcinogenicity of MWCNTs.

Continue reading „The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats“