Schlagwort: Gene
Gene mutation discovered that causes language impairment, ADHD and myasthenia
Pflanzenzucht: Mit “unsichtbaren” Chromosomen positive Eigenschaften gemeinsam vererben
Junge Gene passen sich schneller an als Alte
Wenn Mütter die Gene der Väter im Embryo komplett abschalten
Warum jemand schwer an COVID-19 erkrankt
Dermatitis Digitalis: Gene beeinflussen Erkrankungsrisiko bei weltweit verbreiteter Rinderkrankheit
Wechselspiel der Gene – Kaum bekannter Transkriptionsfaktor RFX7 hat zentrale Bedeutung bei Wachstum und Krebs
Fall gelöst: Der Biosynthese von Strychnin auf die Spur gekommen
Die Gene im Blick. Für ein gutes Sehvermögen sind auch bisher unbekannte Gene verantwortlich
https://www.senckenberg.de/de/pressemeldungen/die_gene_im_blick/
Grüne Welle für „Gen-Taxis“: Erkenntnissprung bei Peptid-Nanofibrillen
Entzündungen in Herzmuskelzellen bei Kindern: Sind defekte Gene eine Ursache?
Bakterien mit Aufnahmefunktion erfassen Darmgesundheit
With or Without Sleep: Sleep Neuron Activity Boosts Protective Gene Expression and Safeguards Survival
Gene deletion behind anomaly in blood cancer cells
Gene deletion behind anomaly in blood cancer cells
A Single Gene Controls Species Diversity in an Ecosystem
Tatort Pflanzenfalle: DNA-Spuren geben Speiseplan fleischfressender Pflanzen preis
Gene therapy for thalassemia ends need for transfusions in young children
Es regnet Gene und Viren
Unsere Umwelt sehen Metagenomiker als Quelle unentdeckter Viren und Keime: Wie Big-Data-Biologen die Welt genetisch neu vermessen.
Gene regulation in mammals offers clues connecting pregnancy and cancer metastasis
Coronavirus: Die Gene spielen beim Verlust des Geruchssinns mit
Gene Network changes associated with cancer onset and progression identify new candidates for targeted gene therapy
A global assessment of cancer genomic alterations in epigenetic mechanisms
Muhammad A Shah, Emily L Denton, Cheryl H Arrowsmith, Mathieu Lupien and Matthieu Schapira
Abstract
Background
The notion that epigenetic mechanisms may be central to cancer initiation and progression is supported by recent next-generation sequencing efforts revealing that genes involved in chromatin-mediated signaling are recurrently mutated in cancer patients.
Results
Here, we analyze mutational and transcriptional profiles from TCGA and the ICGC across a collection 441 chromatin factors and histones. Chromatin factors essential for rapid replication are frequently overexpressed, and those that maintain genome stability frequently mutated. We identify novel mutation hotspots such as K36M in histone H3.1, and uncover a general trend in which transcriptional profiles and somatic mutations in tumor samples favor increased transcriptionally repressive histone methylation, and defective chromatin remodeling.
Conclusions
This unbiased approach confirms previously published data, uncovers novel cancer-associated aberrations targeting epigenetic mechanisms, and justifies continued monitoring of chromatin-related alterations as a class, as more cancer types and distinct cancer stages are represented in cancer genomics data repositories.
Continue reading „A global assessment of cancer genomic alterations in epigenetic mechanisms“ →
A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine
Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming
Wallace hypothesized mitochondrial dysfunction as a central role in a wide range of age-related disorders and various forms of cancer. Steadily rising increases in mitochondrial DNA mutations cause abrupt shifts in diseases. Discrete changes in nuclear gene expression in response to small increases in DNA mutant level are analogous to the phase shifts that is well known in physics: As heat is added, the ice abruptly turns to water or with more heat abruptly to steam. Therefore, a quantitative change that is an increasing proportion of mitochondrial DNA mutation results in a qualitative change which coordinate changes in nuclear gene expression together with discrete changes in clinical symptoms.
Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

Daniel Smeets, Yolanda Markaki, Volker J Schmid, Felix Kraus, Anna Tattermusch, Andrea Cerase, Michael Sterr, Susanne Fiedler, Justin Demmerle, Jens Popken, Heinrich Leonhardt, Neil Brockdorff, Thomas Cremer1, Lothar Schermelleh and Marion Cremer
Abstract
Background
A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs).
Results
We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion.
Conclusions
3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.