Wenn das Gehirn einen Gang runterschaltet

Das Gehirn integriert Informationen mal schneller, mal langsamer und ändert so flexibel seine Zeitskalen. Dies ist das Ergebnis einer jetzt in der Fachzeitschrift Nature Communications erschienenen Studie eines internationalen Forschungsteams. Mittels Analysen experimenteller Daten aus dem visuellen Cortex sowie Computersimulationen können die Forschenden auch erklären, wodurch unterschiedliche Zeitskalen entstehen und wie sie sich ändern: Die Struktur der neuronalen Netze bestimmt, in welchem Tempo die Integration der Information abläuft.

Quelle: IDW Informationsdienst Wissenschaft

Diät: Gehirn verstärkt Signal an Hungersynapsen

Mögliches Ziel für Medikamente zur Bekämpfung des Jo-Jo-Effekts

Viele, die schon einmal eine Diät gemacht haben, kennen das: Nach der Diät kommt der Jojo-Effekt. Forschende vom Max-Planck-Institut für Stoffwechselforschung und der Harvard Medical School haben jetzt an Mäusen gezeigt, dass sich die Kommunikation im Gehirn während einer Diät ändert: Die Nervenzellen, die das Hungergefühl auslösen, erhalten ein stärkeres Signal, so dass die Mäuse nach der Diät deutlich mehr fressen und schnell an Gewicht zunehmen. Langfristig sollen diese Erkenntnisse helfen Medikamente zu finden, die diese Verstärkung verhindern und helfen könnten das Körpergewicht nach einer Diät zu halten.

Quelle: IDW Informationsdienst Wissenschaft

Wettbewerb zwischen den Gehirnhälften im Schlaf

Der Mensch ist beidseitig symmetrisch. Unser Gehirn besteht aus zwei Hälften, den so genannten Hemisphären, die über spezielle Faserbahnen, die durch die Mittellinie verlaufen, miteinander kommunizieren. Jede Hemisphäre ist für die Sinneswahrnehmungen (Sehen, Hören, Tasten) und die motorische Steuerung der gegenüberliegenden Körperhälfte zuständig, aber dank der ständigen Kommunikation zwischen den Hemisphären sind wir uns dieser Aufteilung der Funktionen im Allgemeinen nicht bewusst. Auch beim Menschen sind die beiden Hemisphären auf bestimmte Funktionen spezialisiert: So befinden sich beispielsweise die Sprachbereiche in der Regel in der linken Hemisphäre.

Quelle: IDW Informationsdienst Wissenschaft

Wo das HI-Virus im Gehirn schläft

Das Humane Immundefizienz-Virus HIV-1 kann verschiedene Gewebe des Menschen infizieren. Sobald das Virus in die Zellen eingedrungen ist, integriert es sein Genom in das zelluläre Genom, was zu einer anhaltenden Infektion führt. Die Rolle der Struktur und Organisation des Wirtsgenoms bei der HIV-1-Infektion ist bisher nicht gut verstanden. Anhand eines Zellkulturmodells, das auf Mikroglia-Immunzellen des Gehirns basiert, hat ein internationales Forscherteam unter Leitung von Wissenschaftler:innen des Universitätsklinikums Heidelberg und des Deutschen Zentrums für Infektionsforschung (DZIF) nun die Einbaumuster von HIV-1 in das Genom von Mikrogliazellen definiert.

Quelle: IDW Informationsdienst Wissenschaft

Gegen das Feuer im Gehirn

Bei einer autoimmunen Enzephalitis, einer seltenen, aber schwerwiegenden und mitunter lebensbedrohlichen Entzündung des zentralen Nervensystems, richtet sich die körpereigene Abwehr gegen das zentrale Nervensystem. Zum ersten Mal beschrieben wurde diese Krankheit im Jahr 2007. Am häufigsten tritt die anti-NMDA-Rezeptor-Enzephalitis auf. Bei dieser Autoimmunerkrankung ist ein Protein gestört, das bei der Signalübertragung im Gehirn eine wichtige Rolle spielt: der Glutamat Rezeptor vom NMDA-Typ, kurz NMDA-Rezeptor. Gegen diese Erkrankung haben Forschende aus Braunschweig, Jena, Leipzig und Berlin ein neues potentielles Therapeutikum entwickelt.

Quelle: IDW Informationsdienst Wissenschaft

Fluoreszierendes Protein bringt Licht ins Bienengehirn

Biologie: Veröffentlichung in PLoS Biology

Ein internationales Team von Bienenforschenden unter Beteiligung der Heinrich-Heine-Universität Düsseldorf (HHU) hat einen Calcium-Sensor in eine Biene integriert. Mit seiner Hilfe kann die neuronale Informationsverarbeitung bei der Honigbiene, unter anderem die Reaktion auf Gerüche, untersucht werden. Dies gibt auch Aufschlüsse darüber, wie soziales Verhalten im Gehirn verortet ist, wie die Forschenden in der Fachzeitschrift PLoS Biology erläutern.

Quelle: IDW Informationsdienst Wissenschaft

Kognitive Fähigkeiten des Oktopus

Acht Arme und eine Tarnkappenhaut – Kraken erscheinen uns aufregend fremdartig, ihre kognitiven Fähigkeiten faszinieren uns, weil sie mit denen von Wirbeltieren vergleichbar sind. Dabei haben sich unsere Entwicklungslinien vor etwa 550 Millionen Jahren getrennt. Die Kombination von Intelligenz und Fremdartigkeit veranlasste Neurowissenschaftlerinnen und -wissenschaftler bereits vor 150 Jahren, das Gehirn von Oktopoden zu studieren. Einem internationalen Team mit Beteiligung der Universität Göttingen sind nun die ersten Hirnstrommessungen in freischwimmenden Kraken gelungen.

Quelle: IDW Informationsdienst Wissenschaft

Aus Fehlern lernt man: Feedback-Mechanismen im Gehirn funktionieren auch ohne Belohnung

Beim Lernen spielen Belohnungen oft eine Rolle, weil man glaubt, dadurch den Erfolg unterstützen zu können. In der Schule bekommen Kinder gute Noten oder werden gelobt. In wissenschaftlichen Lernexperimenten wird in der Regel mit Belohnungsreizen wie Geld gearbeitet. Dr. André Brechmann und Dr. Susann Wolff vom Leibniz-Institut für Neurobiologie (LIN) Magdeburg haben nun herausgefunden: Auch ohne positives Feedback durch Belohnung können Versuchspersonen durchaus schnell Strategien erlernen, um richtige von falschen Tönen zu unterscheiden. Ihre Studie ist im Fachmagazin Cerebral Cortex erschienen.

Quelle: IDW Informationsdienst Wissenschaft

Schädigende Immunzellen bei Bluthochdruck

Bluthochdruck schädigt Herz, Gehirn und Blutgefäße. Eine wichtige Rolle spielt dabei das Immunsystem, schreibt Suphansa Sawamiphak vom Max Delbrück Center im Fachjournal „Cardiovascular Research“. Bei Zebrafischen bewirken Entzündungen, dass Makrophagen, Blutgefäße nicht schützen, sondern sie angreifen.

Quelle: IDW Informationsdienst Wissenschaft

Per Mausklick durch das Fischgehirn

Bei einer Reise durch unbekanntes Gebiet sind Karten sehr nützlich. Auch Wissenschaftlerinnen und Wissenschaftler verlassen sich auf Karten, wenn sie den komplexen Aufbau des Gehirns verstehen wollen. Forscher am Max-Planck-Institut für biologische Intelligenz haben nun einen neuen Kartensatz für das Zebrafischgehirn erstellt. Sie bestimmten die Aktivität hunderter Gene und stellten sie in einem interaktiven Atlas zusammen. Das Online-Tool erlaubt es, sich im Gehirn dieses Wirbeltiers zurechtzufinden, und bietet neue Einblicke in die Funktion und zelluläre Struktur des Gehirns.

Quelle: IDW Informationsdienst Wissenschaft

Wie Synapsen im Gehirn nicht mehr verschwinden

Bei der Alzheimer-Erkrankung lassen sich kognitive Beeinträchtigungen direkt auf molekulare Veränderungen an den Synapsen des Gehirns zurückführen. Dr. Michael R. Kreutz hat mit seinem Team vom Leibniz-Institut für Neurobiologie (LIN) Magdeburg und vom Zentrum für Molekulare Neurobiologie Hamburg (ZMNH) und dem Team von Prof. Dr. Stefan Remy vom LIN in einer neuen Studie, die kürzlich im EMBO-Journal publiziert wurde, herausgefunden: Die Substanz Nitarsone verhindert im Alzheimer-Mausmodell den Verlust synaptischer Plastizität, indem sie die Aktivität des Transkriptionsfaktors CREB aufrechterhält.

Quelle: IDW Informationsdienst Wissenschaft

Wie das Gehirn Wärme und Kälte erkennt

Wenn wir Dinge berühren, nehmen wir gleichzeitig ihre Temperatur wahr. Dafür ist eine ganz bestimmte Region des Gehirns verantwortlich, berichten Forscher*innen des Max Delbrück Center um James Poulet in „Nature“. Sie haben im hinteren Teil der Inselrinde einen „thermischen Kortex“ entdeckt.

Quelle: IDW Informationsdienst Wissenschaft

Wie konnte der Mensch ein so großes Gehirn entwickeln?

In Jäger- und Sammlergesellschaften bilden bereits Kinder geschlechtsspezifische Fähigkeiten zur Nahrungssuche aus, um besondere Nahrung verfügbar zu machen. Diese Errungenschaft sowie das Teilen von Nahrung könnte es der menschlichen Spezies ermöglicht haben, ein wesentlich größeres Gehirn zu entwickeln als unsere nächsten lebenden Verwandten. Eine stabilere Energie- und Nährstoffversorgung könnte eine größere Investition in das Gehirn ermöglicht haben. Die Studie wurde in der Zeitschrift Frontiers in Ecology and Evolution veröffentlicht.

Quelle: IDW Informationsdienst Wissenschaft

Fischschwärme funktionieren ähnlich wie das Gehirn

Wie es biologischen Systemen wie dem Gehirn oder Tierschwärmen gelingt, die Vielzahl an Einzelinformationen aus verschiedenen Quellen optimal zusammenzuführen, ist wenig bekannt. Es gibt die Hypothese, dass das größte Leistungspotenzial des Gehirns an der Grenze zwischen Ordnung und Chaos liegt, im Zustand der sogenannten Kritikalität. Forschende des Exzellenzclusters „Science of Intelligence“ der Humboldt-Universität zu Berlin (HU), der Technischen Universität Berlin (TU) und des Leibniz-Instituts für Gewässerökologie und Binnenfischerei (IGB) konnten diese Hypothese nun an einem riesigen Fischschwarm nachweisen. Die Studie wurde in Nature Physics veröffentlicht.

Quelle: IDW Informationsdienst Wissenschaft

Gut gewappnet – Wie der Verlust eines Proteins dazu beitragen könnte, Folgen eines Schlaganfalles besser zu verkraften

Für die Signalübertragung im Gehirn spielen Astrozyten, kleine sternförmige Zellen, eine wichtige Rolle. Da das Protein Ezrin vermehrt in den Astrozytenfortsätzen auftritt, wird eine Funktion in der Hirnfunktion vermutet. Forschende des Leibniz-Instituts für Alternsforschung – (FLI) in Jena haben In-vivo-Studien zur Funktion und Rolle von Ezrin in der Hirnentwicklung und im erwachsenen Gehirn durchgeführt. Während der Verlust von Ezrin die Entwicklung kaum beeinflusst, ist die Signalverarbeitung und Form der Astrozyten verändert. Diese Effekte mildern die Toxizität von Neurotransmittern, insbesondere des Glutamats, scheinbar effektiver ab und schützen so Mäuse vor Stress (z.B. Schlaganfall).

Quelle: IDW Informationsdienst Wissenschaft

Wie unser Gehirn Strecken schätzt

Ein Team aus der Marburger Neurowissenschaft hat untersucht, wie unser Gehirn abschätzt, welchen Anteil einer Strecke wir bereits zurückgelegt haben. Die Forschungsgruppe um den Physiker Professor Dr. Frank Bremmer berichtet im Fachblatt „eNeuro“ über seine Ergebnisse.

Quelle: IDW Informationsdienst Wissenschaft

Entwicklung von Gehirn und Nervensystem beim Kleinkind – hochauflösende Ultraschalltechnik bringt neue Erkenntnisse

In den ersten zwei Lebensjahren des Menschen entwickeln sich Gehirnmasse und Synapsen rasant, die Nervenleitgeschwindigkeit verdoppelt sich. Der strukturelle Umbau des peripheren Nervensystems konnte lange nur mit Tierexperimenten und invasiven Techniken untersucht werden. Ein Schweizer Forschungsteam hat nun die Reifung des peripheren Nervensystems beim Kind mittels hochauflösender Ultraschallsonden genauer beschrieben. „Unsere Erkenntnisse sind nicht nur wissenschaftlich interessant, sie helfen auch bei der Diagnose von Neuropathien beim Kleinkind und bei der Reifebeurteilung von frühgeborenen Kindern“, sagt PD Dr. Philip Julian Broser, Vorsitzender der Kommission Neuropädiatrie der DGKN.

Quelle: IDW Informationsdienst Wissenschaft

In der Zone der Erinnerungen

Wissenschaftler entdecken, dass die geheimnisvolle „Zone der Ungewissheit“ es dem Gehirn ermöglicht, schnell neue Erinnerungen zu bilden.

Der Neokortex ist der größte und komplexeste Teil des Gehirns und gilt seit langem als der ultimative Speicher für Langzeiterinnerungen. Doch wie werden dort Spuren vergangener Ereignisse und Erfahrungen niedergelegt? Wissenschaftler des Max-Planck-Instituts für Hirnforschung und der Medizinischen Fakultät der Universität Freiburg haben entdeckt, dass ein wenig erforschtes Gehirnareal, die Zona incerta, auf unkonventionelle Weise mit dem Neokortex kommuniziert, um die Gedächtnisbildung schnell zu steuern.

Quelle: IDW Informationsdienst Wissenschaft

Punkt, Punkt, Komma, Strich – wie unser Gehirn Strichzeichnungen erkennt

Wie ist es dem Gehirn möglich, gezeichnete Objekte als Haus oder als Tier zu erkennen? In einer aktuellen Studie im Journal of Neuroscience haben Wissenschaftler vom Max-Planck-Institut für Kognitions- und Neurowissenschaften in Leipzig in Zusammenarbeit mit der Freien Universität Berlin und der Justus-Liebig-Universität Gießen untersucht, wie sich unsere Wahrnehmung von Strichzeichnungen von natürlichen Bildern unterscheidet. Die Forscher zeigen, dass die Wahrnehmung von Objekten besonders robust gegenüber Veränderungen in unserer Umwelt ist.

Quelle: IDW Informationsdienst Wissenschaft

Neue 3D-Spatial-Omics-Technologie ermöglicht die Untersuchung von Krankheiten in ihren frühen Stadien

Wie kann eine einzige kranke Zelle in einem intakten Gehirn oder einem menschlichen Herzen aufgespürt werden? Diese Fragestellung gleicht der Suche nach der Nadel im Heuhaufen. Die Teams von Ali Ertürk von Helmholtz Munich und der LMU und Matthias Mann am Max-Planck-Institut für Biochemie in Martinsried bei München haben nun eine neue Technologie namens DISCO-MS entwickelt, die dieses Problem lösen kann. DISCO-MS nutzt Robotertechnologien, um Proteomikdaten von „kranken“ Zellen zu erhalten, die in einem frühen Stadium der Krankheit genau identifiziert werden.

Quelle: IDW Informationsdienst Wissenschaft

Hirnschrittmacher könnte Alzheimer-Erkrankung besser behandelbar machen

Charité-Studie entdeckt Hirnnetzwerk, dessen Stimulation symptomlindernd wirkt

Die Alzheimer-Krankheit ist die häufigste Ursache von Demenzerkrankungen, bislang aber nicht gut behandelbar. Eine mögliche zukünftige Therapieform könnte die sogenannte Tiefe Hirnstimulation sein, die auch als Hirnschrittmacher bekannt ist. Ein Forschungsteam der Charité – Universitätsmedizin Berlin hat in einer im Fachmagazin Nature Communications* veröffentlichten Studie ein spezifisches Netzwerk im Gehirn von Alzheimer-Patient:innen ausgemacht, dessen Stimulation mit einer Linderung der Symptome einherging. Die Forschenden hoffen, dass die Studie den Weg für weiterführende Untersuchungen ebnet.

Quelle: IDW Informationsdienst Wissenschaft

Sinn durch Sinnlichkeit – Ulmer Psychologen widerlegen klassische Annahme zur Wissensverarbeitung im Gehirn

„Angststörung“, „Sucht“ oder „Konditionierung“: Wie speichert das Gehirn solche wissenschaftlichen Begriffe – und geschieht das bei Expertinnen und Experten anders als bei Laien? Eine Studie um den Ulmer Neurowissenschaftler Professor Markus Kiefer weist darauf hin, dass solche abstrakten Konzepte und wissenschaftlichen Begriffe bei beiden Personengruppen im sinnlich-erfahrungsbasierten Bereich des Gehirns verankert werden. Eine traditionellere Annahme der Psychologie lautet dagegen, dass sich die Wissensspeicherung im Lauf der akademischen Bildung hin zu abstrakteren, sprachlich-symbolischen Hirnstrukturen verlagert.

Quelle: IDW Informationsdienst Wissenschaft

Ein neues Mikroskop beleuchtet die Funktionsweise von Nervenzellen tief im Gehirn bei sich frei verhaltenden Mäusen

Wie finden wir heraus, was in Nervenzellen tief im Gehirn vor sich geht, während ein Tier aktiv ist? Forschende des MPINB haben ein Miniatur-Mikroskop entwickelt, das Mäuse auf dem Kopf tragen können, während sie sich uneingeschränkt bewegen. Das nur 2 Gramm schwere ferngesteuerte Mikroskop kann die neuronale Aktivität in allen Schichten der Großhirnrinde messen, selbst in tiefliegenden, ohne dass das Tier während der Versuche gestört wird. Anders als alle vergleichbaren Modelle funktioniert es auch bei Helligkeit und ermöglicht daher die Untersuchung des gesamten Verhaltensspektrums. Das neue Mikroskop ist ein Meilenstein für die Erforschung, wie das Gehirn komplexes Verhalten steuert.

Quelle: IDW Informationsdienst Wissenschaft

Schaltkreis im Gehirn verantwortlich für Bewegungsaktivierung und Vermeidungsverhalten

In einer wenig erforschten Hirnregion identifizierten Wissenschaftler Nervenzellen, die das Stresshormon CRH (Corticotropin-releasing hormone) produzieren. Sie zeigten, dass das CRH dieser Region bei Reaktionsbereitschaft, Bewegungsaktivierung und Vermeidungsverhalten eine Rolle spielt. Die Erkenntnisse könnten für das Verständnis psychiatrischer Erkrankungen wichtig sein.

Quelle: IDW Informationsdienst Wissenschaft

Schlüsselfaktoren für die Regeneration von Hirngewebe identifiziert

LMU-Forschende zeigen im Zebrafischmodell, dass zwei Proteine Narbenbildung im Gehirn verhindern und dadurch die Regenerationsfähigkeit verbessern.

Quelle: IDW Informationsdienst Wissenschaft