Schlagwort: evolutionary
Scientists discover ‘lost world’ of our early ancestors in billion-year-old rocks
African rhinos share retroviruses not found in Asian rhinos or other related species
Scientists “revive” Stone Age molecules
Genetic heritage from the Stone Age influences our chance to have a long life
New eyes discovered in trilobites
How fishermen benefit from reversing evolution of cod
The dual face of photoreceptors during seed germination
Genetic switch makes the eyes of male bees large and of female bees small
Bee researchers at Heinrich Heine University Düsseldorf (HHU) headed by Professor Dr Martin Beye have identified a new gene in honeybees, which is responsible for the dimorphic eye differentiation between males and females of the species. The researchers have now presented this gene and the evolutionary genetic conclusions they have drawn from it in the scientific journal Nature Communications.
Autophagy: The molecular regulation of self-eating
1 billion years of abstinence: chloroplasts finally can hope for sex!
Extraordinary flight artists. Hummingbird’s hovering flight likely evolved because of a lost gene
Two-billion-year-old enzyme reconstructed – Detective work by molecular biologists and bioinformatics researchers
FAU biologist discovers evidence for intentional communication in female putty-nosed monkeys
Vocal Communication Originated over 400 Million Years Ago
Gut microbes and humans on a joint evolutionary journey
The wax flowers and their complex relationship
Genetic time travel back 50 million years: Scientific team reveals the correct evolutionary relationships among possums
A two-step adaptive walk in the wild
New social organization evolved in one species of fire ants before spreading to other species
James W. Lightfoot commended with the Heidelberg Academy Award
Neuroscientist and Max Planck Research Group Leader James Lightfoot is awarded the Academy Award of the Heidelberg Academy of Sciences and Humanity. Lightfoot is recognized for his scientific findings on how a predatory nematode species is able to recognize its own offspring and kin. This turned out to be dependent on a small peptide that provides an identification signal. The Academy Award will be presented at a special ceremony on May 22.
When synapse building blocks became scarce: Bayreuth biologists explain protein exchange during vertebrate evolution
Microorganism sheds new light on cancer resistance
Mitochondria and the evolutionary roots of cancer
Cancer is a group of almost 200 diseases that involve variety of changes in cell structure, morphology, and physiology. Cancer phenotype is underlying several alterations in cellular dynamics with three most critical features, which includes self-sufficiency in growth signals and insensitivity to inhibitory signals, evasion of programmed cell death and limitless replicative potential with a potential for the invasion of other organs. Cancer disease is widespread among metazoans. Some properties of cancer cells such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility, i.e. metastasis, resemble a prokaryotic lifestyle, which leads to the assumption of a reversal like evolution from eucariotic back to proteobacterial state. This phenotype matches the phenotype of the last universal common ancestor (LUCA) that resulted from the endosymbiosis between archaebacteria and α-proteobacteria, which later became the mitochondria.
A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine
Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming
Wallace hypothesized mitochondrial dysfunction as a central role in a wide range of age-related disorders and various forms of cancer. Steadily rising increases in mitochondrial DNA mutations cause abrupt shifts in diseases. Discrete changes in nuclear gene expression in response to small increases in DNA mutant level are analogous to the phase shifts that is well known in physics: As heat is added, the ice abruptly turns to water or with more heat abruptly to steam. Therefore, a quantitative change that is an increasing proportion of mitochondrial DNA mutation results in a qualitative change which coordinate changes in nuclear gene expression together with discrete changes in clinical symptoms.
Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

Daniel Smeets, Yolanda Markaki, Volker J Schmid, Felix Kraus, Anna Tattermusch, Andrea Cerase, Michael Sterr, Susanne Fiedler, Justin Demmerle, Jens Popken, Heinrich Leonhardt, Neil Brockdorff, Thomas Cremer1, Lothar Schermelleh and Marion Cremer
Abstract
Background
A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs).
Results
We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion.
Conclusions
3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.