Landmark study points to source of rapid aging, chronic inflammation in people living with HIV

In a groundbreaking study of people living with HIV, researchers found that elusive white blood cells called neutrophils play a role in impaired T cell functions and counts, as well as the associated chronic inflammation that is common with the virus.

Quelle: Sciencedaily

High cell membrane tension constrains the spread of cancer

The membranes of cancer cells are more pliant than the membranes of normal cells. A research collaboration has discovered that cancer invasion and migration can be supressed in mice by manipulating the stiffness of the cell membrane. Hopefully this will contribute towards the development of new treatments that target the physical characteristics of cancer cells.

Quelle: Sciencedaily

It takes cellular teamwork to heal the intestine

A meticulous single-cell analytical approach to study the repair process of rotavirus-caused injury in an animal model revealed that the damaged epithelium contains a variety of cell types involved in repairing it through broad coordinated responses that ultimately heal the damaged tissue.

Quelle: Sciencedaily

Uncovering how injury to the pancreas impacts cancer formation

Pioneering research shows that acinar cells in the pancreas form new cell types to mitigate injury but are then susceptible to cancerous mutations.

Quelle: Sciencedaily

Researchers target tumors with intracellular precision

A non-toxic, bacteria-based system can detect when it is inside a cancer cell and then release its payload of therapeutic drugs directly into the cell. The work could lead to effective, targeted therapies for currently untreatable cancers, such as liver or metastatic breast cancer.

Quelle: Sciencedaily

The human immune system is an early riser

Circadian clocks, which regulate most of the physiological processes of living beings over a rhythm of about 24 hours, are one of the most fundamental biological mechanisms. By deciphering the cell migration mechanisms underlying the immune response, scientists have shown that the activation of the immune system is modulated according to the time of day. Indeed, the migration of immune cells from the skin to the lymph nodes oscillates over a 24-hours period. Immune function is highest in the resting phase, just before activity resumes — in the afternoon for mice, which are nocturnal animals, and early morning for humans. These results suggest that the time of day should possibly be taken into account when administering vaccines or immunotherapies against cancer, in order to increase their effectiveness.

Quelle: Sciencedaily

Molecular atlas of small cell lung cancer reveals unusual cell type that could explain why it’s so aggressive

Stem-like cells that make up only a tiny fraction of the total cells in a lung tumor could be the key to stopping the disease’s deadly spread, say researchers.

Quelle: Sciencedaily

Mito warriors: Scientists discover how T cell assassins reload their weapons to kill and kill again

Researchers have discovered how T cells — an important component of our immune system — are able keep on killing as they hunt down and kill cancer cells, repeatedly reloading their toxic weapons.

Quelle: Sciencedaily

Solving mystery of rare cancers directly caused by HIV

For nearly a decade, scientists have known that HIV integrates itself into genes in cells that have the potential to cause cancer. And when this happens in animals with other retroviruses, those animals often develop cancer. But, perplexingly and fortunately, that isn’t regularly happening in people living with HIV. A new study reveals why doctors aren’t seeing high rates of T cell lymphomas — or cancers of the immune system — in patients with HIV.

Quelle: Sciencedaily

Break through the tumor’s protective shield

The immune system protects the body from cancer. To protect healthy body cells from its own immune system, they have developed a protective shield: the protein CD47 is a so called ‚don’t eat me‘ signal, which tells the immune cells to stand back. Tumor cells exploit this CD47-based protection strategy for evading the immune system, by increasing presentation of CD47 on their cell surface. A team has now developed a therapy concept for programming the tumor cells to produce on their own a CD47-blocking and immune-activation fusion protein. This therapy approach could stop tumor growth.

Quelle: Sciencedaily

New way to image whole organisms in 3D brings key skin color pigment into focus

To understand the biological underpinnings of skin and hair pigmentation and related diseases such as albinism or melanoma, scientists and doctors need quantitative, three-dimensional information about the architecture, content and location of pigment cells. Researchers have developed a new technique that allows scientists to visualize every cell containing melanin pigment in 3D, in whole zebrafish.

Quelle: Sciencedaily

How high-fat diets allow cancer cells to go unnoticed

The immune system relies on cell surface tags to recognize cancer cells. Researchers discovered mice who ate high-fat diets produced less of these tags on their intestinal cells, suppressing the ability of immune cells to identify and eliminate intestinal tumors. The high-fat diet also reduced the presence of certain bacteria in the mice’s gut, which normally helps maintain the production of these tags.

Quelle: Sciencedaily

Discovery of mechanics of drug targets for COVID-19

Researchers have discovered the working mechanism of potential drug targets for various diseases such as cancer, rheumatoid arthritis, and even COVID-19. The findings uncover the inner workings of cell receptors that are involved in cancer progression and inflammatory diseases.

Quelle: Sciencedaily

A global assessment of cancer genomic alterations in epigenetic mechanisms

Muhammad A Shah, Emily L Denton, Cheryl H Arrowsmith, Mathieu Lupien and Matthieu Schapira

Abstract

Background

The notion that epigenetic mechanisms may be central to cancer initiation and progression is supported by recent next-generation sequencing efforts revealing that genes involved in chromatin-mediated signaling are recurrently mutated in cancer patients.

Results

Here, we analyze mutational and transcriptional profiles from TCGA and the ICGC across a collection 441 chromatin factors and histones. Chromatin factors essential for rapid replication are frequently overexpressed, and those that maintain genome stability frequently mutated. We identify novel mutation hotspots such as K36M in histone H3.1, and uncover a general trend in which transcriptional profiles and somatic mutations in tumor samples favor increased transcriptionally repressive histone methylation, and defective chromatin remodeling.

Conclusions

This unbiased approach confirms previously published data, uncovers novel cancer-associated aberrations targeting epigenetic mechanisms, and justifies continued monitoring of chromatin-related alterations as a class, as more cancer types and distinct cancer stages are represented in cancer genomics data repositories.

Continue reading „A global assessment of cancer genomic alterations in epigenetic mechanisms“

Mitochondria and the evolutionary roots of cancer

Cancer is a group of almost 200 diseases that involve variety of changes in cell structure, morphology, and physiology. Cancer phenotype is underlying several alterations in cellular dynamics with three most critical features, which includes self-sufficiency in growth signals and insensitivity to inhibitory signals, evasion of programmed cell death and limitless replicative potential with a potential for the invasion of other organs. Cancer disease is widespread among metazoans. Some properties of cancer cells such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility, i.e. metastasis, resemble a prokaryotic lifestyle, which leads to the assumption of a reversal like evolution from eucariotic back to proteobacterial state. This phenotype matches the phenotype of the last universal common ancestor (LUCA) that resulted from the endosymbiosis between archaebacteria and α-proteobacteria, which later became the mitochondria.

 Davila AF and Zamorano P (2013) Mitochondria and the evolutionary roots of cancer. Phys. Biol. 10 (2013) 026008, doi:10.1088/1478-3975/10/2/026008

About metabolism of a carcinoma cell

Most cancer cells utilize aerobic glycolysis irrespective of their tissue of origin. The alteration from oxidative phosphorylation to glycolysis – called the Warburg effect – is an universal phenomen and has now become a diagnostic tool for cancer detection.

Warburg O, Posener K, Negelein E. (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z. 152, 309–344.

Variation in cancer risk among tissues can be explained by the number of stem cell divisions

Tomasetti and Vogelstein show that the lifetime risk of cancers of many different types is strongly correlated with the total number of divisions of the normal self-renewing cells maintaining that tissue’s homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to bad luck, that is, random mutations arising during DNA replication in normal, noncancerous stem cells.

Tomasetti C, Vogelstein B (2015): Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2 January 2015: Vol. 347 no. 6217 pp. 78-81 DOI: 10.1126/science.1260825

Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression

Energy transfer in material solids is driven primarily by differences in intensive thermodynamic quantities such as pressure and temperature. The crucial observation  in quantum-theoretical models was the consideration of the heat capacity as associated with the vibrations of atoms in a crystalline solid. However, living organisms are essentially isothermal. Because of very little differences in temperature between different parts of a cell it is assumed that energy flow in living organisms is mediated by differences in the turnover time of various metabolic processes in the cell, which occur in cyclical fashion. It has been shown that the cycle time of these metabolic processes is related to the metabolic rate, that is the rate at which the organism transforms the free energy of whatever source into metabolic work, maintenance of constant temperature and structuraland functional organization of the cells. Quantum Metabolism exploits the methodology of the quantum theory of solids to provide a molecular level which derives new rules relating metabolic rate and body size.

Davies P, Lloyd A, Demetrius LA, Tuszynski, JA (2012) Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression. Citation: AIP Advances 2, 011101 (2012); doi: 10.1063/1.3697850

Einstein A (1920), Schallausbreitung in teilweise dissozieirten Gasen

Einstein A (1924) Quantentheorie des einatomigen, idealen Gases

Wholeness and implicate order: “Deep” quantum chemistry and cell consciousness: quantum chemistry controls genes and biochemistry to give cells and higher organism’s consciousness and complex behavior

Bohm used the term ‘holomovement’ which is an unbroken and undivided totality and carries an implicate order which is he totality of an order including both the manifested and non-manifested aspects of the order. Non-local quantum phenomena reside in a subtler level than quantum level that is the quantum potential which sustains intimately within the underlying implicates order and the quantum processes are driven by information from quantum potential. A global quantum field of a cell, which can be described as a super orbital, provides many levels of interactions among all particles of a cell. From quantum metabolism pint of view all electrons that are contained in one system are inseparable from eachother. In a cell the cytoplasm is a gel made of up to 30% proteins, and the structure of this gel is very much like a liquid crystal which provides collective properties of the electrons.

All these electrons within this super orbital of molecules and co-enzymes of the cell, including all the many small molecules embedded in these large biomolecules, and cofactors transporting electrons are making up one huge structure that is a global cell orbital.

Bohm D (1980) Wholeness and implicate order. Routledge Classics Eds., London and New York 191-247.

Ventegodt S, Hermansen TD, Flensborg-Madsen T, Nielsen ML and Merrick J (2006) A theory of “Deep” quantum chemistry and cell consciousness: quantum chemistry controls genes and biochemistry to give cells and higher organism’s consciousness and complex behavior. The Scientific World Journal 6, 1441-1453.

A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation

Low non-specific, low intensity laser illumination (635, 670 or 830 nm) apparently enhances centriole replication and promotes cell division, what is the opposite of a desired cancer therapy. In the contrary, centrioles are sensitive to coherent light. Then higher intensity laser illumination – still below heating threshold – may selectively target centrioles, impair mitosis and be a beneficial therapy against malignancy. If centrioles utilize quantum photons for entanglement, properties of centrosomes/centrioles approached more specifically could be useful for therapy. Healthy centrioles for a given organism or tissue differentiation should then have specific quantum optical properties detectable through some type of readout technology. An afflicted patient’s normal cells could be examined to determine the required centriole properties which may then be used to generate identical quantum coherent photons administered to the malignancy. In this mode the idea would not be to destroy the tumor – relatively low energy lasers would be used – but to “reprogram” or redifferentiate the centrioles and transform the tumor back to healthy well differentiated tissue.

Hameroff, SR (2004) A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. BioSystems 77, 119–136

Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

3D-SIM-based DAPI intensity classification in the Barr body versus the entire nucleus of C2C12 cells. (A) Mid z-section of a DAPI-stained nucleus. The area below the dashed line illustrates the resolution level obtained by wide-field deconvolution microscopy, for comparison. Inset magnifications show the non-uniformly compacted structure of the Barr body resolvable with 3D-SIM (1) and an arbitrary autosomal region with CDCs (2). Scale bars: 5 μm, insets 1 μm. (B) X chromosome-specific painting (green) of Xi (left) and Xa territories (right) of the same nucleus in different z-sections. Note the high convergence between the painted Xi and the DAPI visualized Barr body (arrowheads). Scale bars: 2 μm, insets 1 μm. (C) 3D DAPI intensity classification exemplified for the nucleus shown in (A). Seven DAPI intensity classes displayed in false-color code ranging from class 1 (blue) representing pixels close to background intensity, largely representing the IC, up to class 7 (white) representing pixels with highest density, mainly associated with chromocenters. Framed areas of the Barr body (inset 1) and a representative autosomal region (inset 2) are shown on the right at resolution levels of 3D-SIM, deconvolution and conventional wide-field microscopy. The Xi territory pervaded by lower DAPI intensities becomes evident only at 3D-SIM resolution, whereas both wide-field and deconvolution microscopy imply a concentric increase of density in the Barr body. In the autosomal region, chromatin assigned to classes 2 to 3 lines compacted CDCs, represented by classes 4 to 6. (D) Left: average DAPI intensity classification profiles with standard deviations evaluated for entire nuclear volumes or the Barr body region only (dark grey bars). Right: over/underrepresentation of the average DAPI intensity class fraction sizes in the Barr body versus entire nuclear volumes (n = 12). Distribution differences on classes between Xi and entire nucleus P <0.001. 3D-SIM, three-dimensional structured illumination microscopy; CDC, chromatin domain cluster; DAPI, 4',6-diamidino-2-phenylindole; FISH, fluorescence in situ hybridization; IC, interchromatin compartment; Xa, active X chromosome; Xi, inactive X chromosome. Smeets et al. Epigenetics & Chromatin 2014 7:8   doi:10.1186/1756-8935-7-8
3D-SIM-based DAPI intensity classification in the Barr body versus the entire nucleus of C2C12 cells. (A) Mid z-section of a DAPI-stained nucleus. The area below the dashed line illustrates the resolution level obtained by wide-field deconvolution microscopy, for comparison. Inset magnifications show the non-uniformly compacted structure of the Barr body resolvable with 3D-SIM (1) and an arbitrary autosomal region with CDCs (2). Scale bars: 5 μm, insets 1 μm. (B) X chromosome-specific painting (green) of Xi (left) and Xa territories (right) of the same nucleus in different z-sections. Note the high convergence between the painted Xi and the DAPI visualized Barr body (arrowheads). Scale bars: 2 μm, insets 1 μm. (C) 3D DAPI intensity classification exemplified for the nucleus shown in (A). Seven DAPI intensity classes displayed in false-color code ranging from class 1 (blue) representing pixels close to background intensity, largely representing the IC, up to class 7 (white) representing pixels with highest density, mainly associated with chromocenters. Framed areas of the Barr body (inset 1) and a representative autosomal region (inset 2) are shown on the right at resolution levels of 3D-SIM, deconvolution and conventional wide-field microscopy. The Xi territory pervaded by lower DAPI intensities becomes evident only at 3D-SIM resolution, whereas both wide-field and deconvolution microscopy imply a concentric increase of density in the Barr body. In the autosomal region, chromatin assigned to classes 2 to 3 lines compacted CDCs, represented by classes 4 to 6. (D) Left: average DAPI intensity classification profiles with standard deviations evaluated for entire nuclear volumes or the Barr body region only (dark grey bars). Right: over/underrepresentation of the average DAPI intensity class fraction sizes in the Barr body versus entire nuclear volumes (n = 12). Distribution differences on classes between Xi and entire nucleus P Smeets et al. Epigenetics & Chromatin 2014 7:8 doi:10.1186/1756-8935-7-8

Daniel Smeets, Yolanda Markaki, Volker J Schmid, Felix Kraus, Anna Tattermusch, Andrea Cerase, Michael Sterr, Susanne Fiedler, Justin Demmerle, Jens Popken, Heinrich Leonhardt, Neil Brockdorff, Thomas Cremer1, Lothar Schermelleh and Marion Cremer

Abstract

Background

A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs).

Results

We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion.

Conclusions

3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.

Continue reading „Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci“

The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats

Non-neoplastic histopathological findings in the abdominal cavity. A: High-power view of anti-podoplanin immunohistochemistry showing single MWCNT A (high dose) nanotubes in the tissue (arrows). B: High-power view of anti-podoplanin immunohistochemistry showing single asbestos fibers in the tissue (arrows). C: H & E, high-power view of granuloma induced by MWCNT A (low dose) nanotubes including single nanotube (arrow, 25×). D: H & E, high-power view of granuloma induced by asbestos including single fiber (arrow, 40×). Rittinghausen et al. Particle and Fibre Toxicology 2014 11:59   doi:10.1186/s12989-014-0059-z
Non-neoplastic histopathological findings in the abdominal cavity. A: High-power view of anti-podoplanin immunohistochemistry showing single MWCNT A (high dose) nanotubes in the tissue (arrows). B: High-power view of anti-podoplanin immunohistochemistry showing single asbestos fibers in the tissue (arrows). C: H & E, high-power view of granuloma induced by MWCNT A (low dose) nanotubes including single nanotube (arrow, 25×). D: H & E, high-power view of granuloma induced by asbestos including single fiber (arrow, 40×).
Rittinghausen et al. Particle and Fibre Toxicology 2014 11:59 doi:10.1186/s12989-014-0059-z

Susanne Rittinghausen, Anja Hackbarth, Otto Creutzenberg, Heinrich Ernst, Uwe Heinrich, Albrecht Leonhardt and Dirk Schaudien

Abstract

Background

Biological effects of tailor-made multi-walled carbon nanotubes (MWCNTs) without functionalization were investigated in vivo in a two-year carcinogenicity study. In the past, intraperitoneal carcinogenicity studies in rats using biopersistent granular dusts had always been negative, whereas a number of such studies with different asbestos fibers had shown tumor induction. The aim of this study was to identify possible carcinogenic effects of MWCNTs. We compared induced tumors with asbestos-induced mesotheliomas and evaluated their relevance for humans by immunohistochemical methods.

Methods

A total of 500 male Wistar rats (50 per group) were treated once by intraperitoneal injection with 109 or 5 × 109 WHO carbon nanotubes of one of four different MWCNTs suspended in artificial lung medium, which was also used as negative control. Amosite asbestos (108 WHO fibers) served as positive control. Morbid rats were sacrificed and necropsy comprising all organs was performed. Histopathological classification of tumors and, additionally, immunohistochemistry were conducted for podoplanin, pan-cytokeratin, and vimentin to compare induced tumors with malignant mesotheliomas occurring in humans.

Results

Treatments induced tumors in all dose groups, but incidences and times to tumor differed between groups. Most tumors were histologically and immunohistochemically classified as malignant mesotheliomas, revealing a predominantly superficial spread on the serosal surface of the abdominal cavity. Furthermore, most tumors showed invasion of peritoneal organs, especially the diaphragm. All tested MWCNT types caused mesotheliomas. We observed highest frequencies and earliest appearances after treatment with the rather straight MWCNT types A and B. In the MWCNT C groups, first appearances of morbid mesothelioma-bearing rats were only slightly later. Later during the two-year study, we found mesotheliomas also in rats treated with MWCNT D – the most curved type of nanotubes. Malignant mesotheliomas induced by intraperitoneal injection of different MWCNTs and of asbestos were histopathologically and immunohistochemically similar, also compared with mesotheliomas in man, suggesting similar pathogenesis.

Conclusion

We showed a carcinogenic effect for all tested MWCNTs. Besides aspect ratio, curvature seems to be an important parameter influencing the carcinogenicity of MWCNTs.

Continue reading „The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats“