Gene regulation in mammals offers clues connecting pregnancy and cancer metastasis

In many mammals including humans, the placenta invades the wall of the uterus during pregnancy in the same way that cancer cells invade surrounding tissues. Using genomic sequences and gene expression information, researchers were able to predict specific signaling proteins that drive the expression of genes that decrease the susceptibility of invasion in human cells. Using a custom fabricated bio chip, the researchers confirmed that these predicted proteins did in fact decrease the invasion of both cancer and placental cells.

Quelle: Sciencedaily

Pancreatic cancer cells feed off hyaluronic acid

Hyaluronic acid, or HA, is a known presence in pancreatic tumors, but a new study shows that hyaluronic acid also acts as food to the cancer cells. These findings provide insight into how pancreatic cancer cells grow and indicate new possibilities to treat them.

Quelle: Sciencedaily

New treatment target ID’d for radiation-resistant cervical cancer

Understanding how cells die is key to developing new treatments for many diseases, whether the goal is to make cancer cells die or keep healthy cells alive in the face of other illnesses, such as massive infections or strokes. Two new studies have identified a previously unrecognized pathway of cell death — named lysoptosis — and demonstrate how it could lead to new therapies for cervical cancer.

Quelle: Sciencedaily

Researchers identify signaling mechanisms in pancreatic cancer cells that could provide treatment targets

Scientists have provided new insights into molecular ‚crosstalk‘ in pancreas cancer cells, identifying vulnerabilities that could provide a target for therapeutic drugs already being studied in several cancers.

Quelle: Sciencedaily

Obscure protein is spotlighted in fight against leukemia

Acute myeloid leukemia (AML) is a cancer of white blood cells. Researchers discovered that AML cancer cells depend on a protein called SCP4 to survive. They think the previously little-known protein is involved in a metabolic pathway the cancer cells need to survive. SCP4 provides researchers with a potential new therapeutic approach for this aggressive cancer.

Quelle: Sciencedaily

Dietary fiber improves outcomes for melanoma patients on immunotherapy

Melanoma patients receiving therapy that makes it easier for their immune system to kill cancer cells respond to treatment better when their diet is rich in fiber, according to a large, international research collaboration.

Quelle: Sciencedaily

Reducing copper in the body alters cancer metabolism to reduce risk of aggressive breast cancer

Depleting copper levels may reduce the production of energy that cancer cells need to travel and establish themselves in other parts of the body by a process referred to as metastasis, according to a new study. The discovery of the underlying mechanisms of how copper depletion may help reduce metastasis in breast cancer will help inform the design of future clinical trials.

Quelle: Sciencedaily

CRISPR/Cas9 gene editing boosts effectiveness of ultrasound cancer therapy

Sonodynamic therapy uses ultrasound in combination with drugs to release harmful reactive oxygen species (ROS) at the site of a tumor. However, the treatment isn’t very effective because cancer cells can activate antioxidant defense systems to counteract it. Now, researchers have breached these defenses with CRISPR/Cas9 gene editing, allowing sonodynamic therapy to effectively shrink tumors in a mouse model of liver cancer.

Quelle: Sciencedaily

Biosensor barcodes identify, detail ‘chatting’ among cancer cells

Ever since the first barcode appeared on a pack of chewing gum in 1974, the now-ubiquitous system has enabled manufacturers, retailers and consumers to quickly and effectively identify, characterize, locate and track products and materials. Scientists now demonstrate how they can do the same thing at the molecular level, studying the ways cancer cells ‚talk‘ with one another.

Quelle: Sciencedaily

Shape-morphing microrobots deliver drugs to cancer cells

Chemotherapy successfully treats many forms of cancer, but the side effects can wreak havoc on the rest of the body. Delivering drugs directly to cancer cells could help reduce these unpleasant symptoms. Now, in a proof-of-concept study, researchers have made fish-shaped microrobots that are guided with magnets to cancer cells, where a pH change triggers them to open their mouths and release their chemotherapy cargo.

Quelle: Sciencedaily

How alike are the cancer cells from a single patient?

Using an experimental system involving new genetic technology, researchers analyzed the gene expression signatures of a representative sample of barcoded leukemia cells. After implanting some of the leukemia cells in mice, they discovered that distinct gene expression signatures correlated with the various organs where the cancer cells ended up. They were also able to identify previously unknown genes that are involved in disease progression and chemotherapy resistance, which may offer new targets for treatment.

Quelle: Sciencedaily

High cell membrane tension constrains the spread of cancer

The membranes of cancer cells are more pliant than the membranes of normal cells. A research collaboration has discovered that cancer invasion and migration can be supressed in mice by manipulating the stiffness of the cell membrane. Hopefully this will contribute towards the development of new treatments that target the physical characteristics of cancer cells.

Quelle: Sciencedaily

Researchers identify molecule that blocks immune cells from entering and killing breast tumors

Researchers have identified a key molecule in certain kinds of breast cancers that prevent immune cells from entering tumors and killing the cancer cells inside. This research could pave the way toward a new treatment for certain kinds of aggressive breast cancer.

Quelle: Sciencedaily

Researchers develop a new class of CAR-T cells that target previously untargetable cancer drivers

In a breakthrough for the treatment of aggressive solid cancers, researchers have developed a novel cancer therapy that targets proteins inside cancer cells that are essential for tumor growth and survival but have been historically impossible to reach. Using the power of large data sets and advanced computational approaches, the researchers were able to identify peptides that are presented on the surface of tumor cells and can be targeted with ‚peptide-centric‘ chimeric antigen receptors (PC-CARs), a new class of engineered T cells, stimulating an immune response that eradicates tumors.

Quelle: Sciencedaily

Chemo helps breast cancer cells get their ‘foot in the door’ to the lungs

A new study adds to the evidence that chemotherapy enhances cancer’s spread beyond the primary tumor, showing how one chemo drug allows breast cancer cells to squeeze through and attach to blood vessel linings in the lungs.

Quelle: Sciencedaily

Researcher discovers key gene responsible for cancer drug resistance

A researcher has discovered an enzyme that plays a key role in the ability of cancer cells to resist drug treatment.

Quelle: Sciencedaily

Small molecule may prevent metastasis in colorectal cancer

The compound works by hindering a key pathway that cancer cells rely upon to hoard energy, and is already undergoing clinical trials.

Quelle: Sciencedaily

Weighing cancer cells to personalize drug choices

Researchers have developed a new way to determine whether individual patients will respond to a specific cancer drug or not. This kind of test could help doctors to choose alternative therapies for patients who don’t respond to the therapies normally used to treat their cancer.

Quelle: Sciencedaily

How high-fat diets allow cancer cells to go unnoticed

The immune system relies on cell surface tags to recognize cancer cells. Researchers discovered mice who ate high-fat diets produced less of these tags on their intestinal cells, suppressing the ability of immune cells to identify and eliminate intestinal tumors. The high-fat diet also reduced the presence of certain bacteria in the mice’s gut, which normally helps maintain the production of these tags.

Quelle: Sciencedaily

A global assessment of cancer genomic alterations in epigenetic mechanisms

Muhammad A Shah, Emily L Denton, Cheryl H Arrowsmith, Mathieu Lupien and Matthieu Schapira

Abstract

Background

The notion that epigenetic mechanisms may be central to cancer initiation and progression is supported by recent next-generation sequencing efforts revealing that genes involved in chromatin-mediated signaling are recurrently mutated in cancer patients.

Results

Here, we analyze mutational and transcriptional profiles from TCGA and the ICGC across a collection 441 chromatin factors and histones. Chromatin factors essential for rapid replication are frequently overexpressed, and those that maintain genome stability frequently mutated. We identify novel mutation hotspots such as K36M in histone H3.1, and uncover a general trend in which transcriptional profiles and somatic mutations in tumor samples favor increased transcriptionally repressive histone methylation, and defective chromatin remodeling.

Conclusions

This unbiased approach confirms previously published data, uncovers novel cancer-associated aberrations targeting epigenetic mechanisms, and justifies continued monitoring of chromatin-related alterations as a class, as more cancer types and distinct cancer stages are represented in cancer genomics data repositories.

Continue reading „A global assessment of cancer genomic alterations in epigenetic mechanisms“

Mitochondria and the evolutionary roots of cancer

Cancer is a group of almost 200 diseases that involve variety of changes in cell structure, morphology, and physiology. Cancer phenotype is underlying several alterations in cellular dynamics with three most critical features, which includes self-sufficiency in growth signals and insensitivity to inhibitory signals, evasion of programmed cell death and limitless replicative potential with a potential for the invasion of other organs. Cancer disease is widespread among metazoans. Some properties of cancer cells such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility, i.e. metastasis, resemble a prokaryotic lifestyle, which leads to the assumption of a reversal like evolution from eucariotic back to proteobacterial state. This phenotype matches the phenotype of the last universal common ancestor (LUCA) that resulted from the endosymbiosis between archaebacteria and α-proteobacteria, which later became the mitochondria.

 Davila AF and Zamorano P (2013) Mitochondria and the evolutionary roots of cancer. Phys. Biol. 10 (2013) 026008, doi:10.1088/1478-3975/10/2/026008

About metabolism of a carcinoma cell

Most cancer cells utilize aerobic glycolysis irrespective of their tissue of origin. The alteration from oxidative phosphorylation to glycolysis – called the Warburg effect – is an universal phenomen and has now become a diagnostic tool for cancer detection.

Warburg O, Posener K, Negelein E. (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z. 152, 309–344.

Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression

Energy transfer in material solids is driven primarily by differences in intensive thermodynamic quantities such as pressure and temperature. The crucial observation  in quantum-theoretical models was the consideration of the heat capacity as associated with the vibrations of atoms in a crystalline solid. However, living organisms are essentially isothermal. Because of very little differences in temperature between different parts of a cell it is assumed that energy flow in living organisms is mediated by differences in the turnover time of various metabolic processes in the cell, which occur in cyclical fashion. It has been shown that the cycle time of these metabolic processes is related to the metabolic rate, that is the rate at which the organism transforms the free energy of whatever source into metabolic work, maintenance of constant temperature and structuraland functional organization of the cells. Quantum Metabolism exploits the methodology of the quantum theory of solids to provide a molecular level which derives new rules relating metabolic rate and body size.

Davies P, Lloyd A, Demetrius LA, Tuszynski, JA (2012) Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression. Citation: AIP Advances 2, 011101 (2012); doi: 10.1063/1.3697850

Einstein A (1920), Schallausbreitung in teilweise dissozieirten Gasen

Einstein A (1924) Quantentheorie des einatomigen, idealen Gases