Das kleine Einmaleins der Nervenzelle

Nervenzellen führen unentwegt komplizierte Berechnungen durch – eine Voraussetzung dafür, dass wir zum Beispiel ein Geräusch im Raum lokalisieren oder die Richtung einer Bewegung abschätzen können. Dazu müssen einzelne Zellen zwei Signale multiplizieren. Wie solch ein Rechenprozess konkret abläuft, war jahrzehntelang ein Rätsel. Eine Studie des Max-Planck-Instituts für biologische Intelligenz, in Gründung (i.G.), hat in der Fruchtfliege die biophysikalische Grundlage entschlüsselt, die es einem Nervenzelltyp ermöglicht zwei Eingangssignale miteinander zu multiplizieren. Dies gibt neue Einblicke in die Rechenleistung einzelner Nervenzellen, die unzähligen Vorgängen im Gehirn zugrunde liegt.

Quelle: IDW Informationsdienst Wissenschaft

Nicht alle Gehirne sind gleich: Warum das menschliche Gehirn anfälliger für Krankheiten ist als Tierhirne

Die Ursache der Tuberöse Sklerose, einer seltene Neuroentwicklungsstörung, findet sich in der besonderen Biologie des menschlichen Gehirns. Zu diesem Ergebnis kommen Forscherinnen und Forscher des Wiener Instituts für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften (IMBA). Für die Erforschung wurden die am IMBA entwickelten mikroskopisch kleinen Labormodelle des menschlichen Gehirns – Organoidmodelle genannt – adaptiert. Die Ergebnisse wurden im renommierten Fachjournal Science veröffentlicht. Sie zeigen, dass Krankheiten des menschlichen Gehirns oft besser mit Hilfe von Organoidmodellen des menschlichen Gehirns als mit Tiermodellen verstanden werden können.

Quelle: IDW Informationsdienst Wissenschaft

Wenn das Gehirn erkrankt, kann das Herz brechen

Hirnerkrankungen wie ein Schlaganfall können ein Broken-Heart-Syndrom auslösen. Zu diesem Ergebnis kommen Wissenschaftler des Deutschen Zentrums für Herz-Kreislauf-Forschung (DZHK), die diesen Zusammenhang erstmals systematisch aufgearbeitet haben.

Quelle: IDW Informationsdienst Wissenschaft

Gehirnaktivität im Schlaf: Die Atmung gibt den Takt vor

LMU-Wissenschaftler haben gezeigt, dass die Atmung Prozesse im Gehirn koordiniert, die für die Abspeicherung von Informationen während Schlaf und Ruhe wichtig sind.

Quelle: IDW Informationsdienst Wissenschaft

14 Podcast and YouTube Interviews about The Secret Language of Cells

  Dear Readers To continue our conversation about cellular intelligence and mind in nature, please join me on twitter @jonlieffmd where there is a steady stream of new scientific articles and conversation.  You can also listen and watch the following recent podcast and YouTube interviews. The discussions are focused on my book, The Secret Language of […]

Quelle: John Lieff, M.D

Interview with Dr. Lieff about his New Book – The Secret Language of Cells

Why did you write The Secret Language of Cells? While studying signaling among brain cells, I became aware that all our cells—immune cells, gut cells, microbes, plant cells, etc. —are also constantly sending back and forth messages to each other in the same ways that neurons do. These conversations among cells outside of the brain […]

Quelle: John Lieff, M.D

The Relation of Mind and Body as Understood by Interactions of the Immune System and the Brain

The Secret Language of Cells describes revolutionary findings about the interaction of the immune system and the brain and provides a new understanding of the relationship between mind and body. The immune system has a huge impact on the brain and mental health. Similarly, the brain strongly influences immune activity throughout the body. These interactions […]

Quelle: John Lieff, M.D

A New Paradigm for Understanding Health and Disease

  “The Secret Language of Cells … presents a new paradigm for understanding health and disease.” Andrew Weil, MD, director of the Andrew Weil Center for Integrative Medicine, professor at University of Arizona College of Medicine, and author This new paradigm, described in my upcoming book, The Secret Language of Cells, is based on the newly-recognized principle […]

Quelle: John Lieff, M.D

Understanding Virus Signals

It is only recently that scientists have been able to observe tiny viruses and their behavior. Bacteria are a thousand times larger than viruses, and our human cells are a thousand times larger than bacteria. We still don’t know what viruses are and how they can have such a complex lifestyle while consisting of just […]

Quelle: John Lieff, M.D

Redesigned Website & Praise for the Book

Dear Reader,                      During a several year hiatus from writing new blog posts, I have completed my book, The Secret Language of Cells, which is due to be published this September. It is a synthesis, organization, and update of much of what I have written in my […]

Quelle: John Lieff, M.D

Initial Praise for The Secret Language of Cells

The Secret Language of Cells takes us on an exciting journey into a world where we can visualize elaborate conversations among immune cells, brain cells, gut cells, bacteria, and even viruses. Dr. Lieff gives a wealth of examples for his thesis that this cellular signaling is the basis of life. It is a must read for anyone […]

Quelle: John Lieff, M.D

” More universities should really be constructed to increase supply by all.

2 documents really have to be written according to the quotations. It is not possible for them to make sure you an ordered composition will match your special directions because they don’t actually look at them. Whoever says your documents will pick on your own sense of assurance although writing them, along with your…

Read More

Quelle: John Lieff, M.D

Schlaganfall-Patient kann dank neuartiger Therapie wieder räumlich sehen

Das Bild zeigt eine Fusions-Diagnostik: Die Probandin trägt eine Bagolini-Brille. Die Therapeutin hält ihr ein Prisma vor ein Auge und misst dabei ihre Fusion, das heißt, sie ermittelt, inwieweit sie in der Lage ist, die Bilder beider Augen zusammenzuführen. Foto: Oliver Dietze
Das Bild zeigt eine Fusions-Diagnostik: Die Probandin trägt eine Bagolini-Brille. Die Therapeutin hält ihr ein Prisma vor ein Auge und misst dabei ihre Fusion, das heißt, sie ermittelt, inwieweit sie in der Lage ist, die Bilder beider Augen zusammenzuführen. Foto: Universität des Saarlandes, Oliver Dietze

Sehstörungen zählen mit zu den häufigsten Folgen eines Schlaganfalls. In seltenen Fällen tritt dabei der Verlust des räumlichen Sehens ein. Die Patienten nehmen die Welt um sich herum nur noch flach wie ein Bild wahr. Sie können keine Entfernungen mehr abschätzen, etwa wenn sie nach einer Tasse greifen oder sich ihnen auf der Straße ein Auto nähert. Diese Störung haben Forscher aus Saarbrücken um Professor Georg Kerkhoff und Anna-Katharina Schaadt mit Kollegen der Charité – Universitätsmedizin Berlin bei einem Patienten genauer untersucht. Sie haben nun erstmals ein wirksames Behandlungskonzept entwickelt und nachgewiesen, welches Hirnareal für diese Sehstörung verantwortlich ist. Die Studie wurde in der renommierten Fachzeitschrift „Neuropsychologia“ veröffentlicht.

Nach einem Schlaganfall kann es zu unterschiedlichen Formen von Sehstörungen kommen. „Diese äußern sich etwa darin, dass die Patienten auf einer Seite blind sind, sodass sie Hindernisse oder Personen auf der Seite übersehen oder Probleme beim Lesen haben“, erklärt Georg Kerkhoff, Professor für Klinische Neuropsychologie der Saar-Uni und Leiter der Neuropsychologischen Universitätsambulanz. Manchmal sind die Folgen aber weitaus gravierender: So hat das Team um Kerkhoff und Schaadt zusammen mit Forscherkollegen um Neurologie-Professor Dr. Stephan Brandt und Dr. Antje Kraft von der Charité in Berlin einen Patienten betreut, bei dem es in Folge eines Schlaganfalls zum Verlust des räumlichen Sehens gekommen war. Zwar konnte er alle Details in seiner Umgebung wahrnehmen, er war allerdings nicht mehr in der Lage, Entfernungen richtig einzuschätzen. „Für ihn war alles flach wie auf einem Gemälde“, erklärt Anna-Katharina Schaadt, Doktorandin bei Kerkhoff und Erstautorin der Studie. „Er bewegte sich daher wie in Zeitlupe und war stets unsicher, wie weit zum Beispiel eine Kaffeetasse auf dem Tisch entfernt ist oder wie schnell sich ein heranfahrendes Auto nähert.“ Wie ein Blinder habe er daher einen langen Stock genutzt, um sich in seiner Umgebung zu orientieren.

In der Neuropsychologischen Hochschulambulanz auf dem Saarbrücker Campus haben die Wissenschaftler um Kerkhoff und Schaadt zunächst die Ursache für diese Störung gesucht. „Wir haben herausgefunden, dass der Patient die Seheindrücke seiner beiden Augen nicht mehr zu einem Gesamtbild verschmelzen konnte“, sagt Schaadt. Fachleute bezeichnen diesen Prozess bei gesunden Menschen als binokulare Fusion. Sie ist wichtig für das dreidimensionale Sehen.

Nach der Diagnose haben die Psychologen im Rahmen einer Therapie über drei Wochen hinweg täglich das räumliche Sehen des Patienten geschult. Dabei kamen drei verschiedene Verfahren zum Einsatz: Mit speziellen optischen Trainingsgeräten (Prismen, Vergenztrainer und Cheiroskop) wurden dem Patienten zwei seitlich leicht versetzte Bilder präsentiert. Diese sollten mit Hilfe sogenannter konvergenter Augenbewegungen zu einem einzigen Bild zusammengesetzt werden. Bei diesem Prozess bewegen sich die Augen gegensinnig zur Nase hin, während die Bilder aber im Blickfeld bleiben. Mit der Zeit „verschmelzen“ die beiden zu einem Bild, das auch räumliche (stereoskopische) Tiefe enthält. „Für den Betroffenen war es so, als ob jemand einen Schalter umgelegt hat. Plötzlich konnte er wieder räumlich sehen, Entfernungen richtig einschätzen und Gegenstände zielsicher greifen“, schildert Schaadt die Eindrücke des Patienten, der mittlerweile wieder seinem Beruf als Jurist nachgehen kann. Auch ein Jahr später in einer Nachuntersuchung konnte der Patient weiterhin räumlich sehen, sodass er laut Kerkhoff als dauerhaft geheilt gilt.

Mit dem Verfahren könnten Therapeuten künftig auch anderen Schlaganfall-Patienten helfen, diese extreme Form der Sehstörung zu behandeln. Zudem sind die Ergebnisse für die Forschung interessant, wie Professor Brandt erläutert: „Sie zeigen, wie spezifisch unser Gehirn organisiert ist. Das geschädigte Areal im sogenannten Parietallappen V6/V6A ist auf 3D-Sehen spezialisiert. Aus Studien an Primaten ist die Hirnregion bereits bekannt. Ihre Funktion beim Menschen ist aber noch nicht hinreichend erforscht.“

Die Studie ist erschienen unter:

Schaadt, A.K., Brandt, S.A., Kraft, A., Kerkhoff, G. Holmes and Horrax
(1919) revisited: Impaired binocular fusion as a cause of “flat
vision” after right parietal brain damage – A case study.
Neuropsychologia (2015), DOI:10.1016/j.neuropsychologia.2015.01.029