Low non-specific, low intensity laser illumination (635, 670 or 830 nm) apparently enhances centriole replication and promotes cell division, what is the opposite of a desired cancer therapy. In the contrary, centrioles are sensitive to coherent light. Then higher intensity laser illumination – still below heating threshold – may selectively target centrioles, impair mitosis and be a beneficial therapy against malignancy. If centrioles utilize quantum photons for entanglement, properties of centrosomes/centrioles approached more specifically could be useful for therapy. Healthy centrioles for a given organism or tissue differentiation should then have specific quantum optical properties detectable through some type of readout technology. An afflicted patient’s normal cells could be examined to determine the required centriole properties which may then be used to generate identical quantum coherent photons administered to the malignancy. In this mode the idea would not be to destroy the tumor – relatively low energy lasers would be used – but to “reprogram” or redifferentiate the centrioles and transform the tumor back to healthy well differentiated tissue.